Spaces:
Sleeping
Sleeping
import numpy as np | |
import pandas as pd | |
from sklearn.neighbors import KNeighborsRegressor | |
from joblib import dump, load | |
import gradio as gr | |
scaler = load('scaler_lab4.joblib') | |
KNN_Regressor = load('knn_lab4.joblib') | |
## Building a Fubction for prediction: | |
def predictPrice(input1, input2, input3, input4, input5, input6, input7, input8): | |
features = np.array([[input1, input2, input3, input4, input5, input6, input7, input8]]) | |
features_scaled = scaler.transform(features) | |
prediction = KNN_Regressor.predict(features_scaled) | |
return round(prediction.item(), 2) | |
## Buidling inputs and outputs: | |
input1 = gr.Slider(-124.35, -114.31, step=5, label = "Longitude") | |
input2 = gr.Slider(32.54, 41.95, step=5, label = "Latitude") | |
input3 = gr.Slider(1, 52.0, step=5, label = "Housing_median_age (Year)") | |
input4 = gr.Slider(1, 39320.0, step=5, label = "Total_rooms") | |
input5 = gr.Slider(1, 6445.0, step=5, label = "Total_bedrooms") | |
input6 = gr.Slider(1, 35682.0, step=5, label = "Population") | |
input7 = gr.Slider(1, 6082.0, step=5, label = "Households") | |
input8 = gr.Slider(0, 15.0, step=5, label = "Median_income") | |
output1 = gr.Textbox(label = "House Value") | |
##title Putting it all together: | |
gr.Interface(fn=predictPrice, inputs=[input1, input2, input3, input4, input5, input6, input7, input8], | |
outputs=output1).launch(show_error=True, share=True) |