import torch import torch.nn as nn import torchvision.models as models class ResClassifier(nn.Module): def __init__(self, class_num=14): super(ResClassifier, self).__init__() self.fc1 = nn.Sequential( nn.Linear(128, 64), nn.BatchNorm1d(64, affine=True), nn.ReLU(inplace=True), nn.Dropout() ) self.fc2 = nn.Sequential( nn.Linear(64, 64), nn.BatchNorm1d(64, affine=True), nn.ReLU(inplace=True), nn.Dropout() ) self.fc3 = nn.Linear(64, class_num) def forward(self, x): fc1_emb = self.fc1(x) fc2_emb = self.fc2(fc1_emb) logit = self.fc3(fc2_emb) return logit class CC_model(nn.Module): def __init__(self, num_classes1=14, num_classes2=None): if num_classes2 is None: num_classes2 = num_classes1 super(CC_model, self).__init__() assert num_classes1 == num_classes2 self.num_classes = num_classes1 self.model_resnet = models.resnet50(weights='ResNet50_Weights.DEFAULT') num_ftrs = self.model_resnet.fc.in_features self.model_resnet.fc = nn.Identity() self.classification_fc = nn.Linear(num_ftrs, num_classes1) self.dr = nn.Linear(num_ftrs, 128) self.fc1 = ResClassifier(num_classes1) self.fc2 = ResClassifier(num_classes1) def forward(self, x, detach_feature=False): feature = self.model_resnet(x) res_out = self.classification_fc(feature) if detach_feature: feature = feature.detach() dr_feature = self.dr(feature) out1 = self.fc1(dr_feature) out2 = self.fc2(dr_feature) output_mean = (out1 + out2) return output_mean