Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, File, UploadFile | |
from fastapi.responses import JSONResponse | |
from datetime import datetime | |
import mammoth | |
import os | |
from crewai import Agent, Task, Crew, Process | |
from crewai_tools import FileReadTool, MDXSearchTool | |
from langchain_openai import ChatOpenAI | |
from dotenv import load_dotenv | |
app = FastAPI() | |
load_dotenv() | |
openai_api_key = os.getenv("openai_api_key") | |
os.environ["OPENAI_MODEL_NAME"] = 'gpt-3.5-turbo' | |
os.environ["OPENAI_API_KEY"] = openai_api_key | |
async def upload_file(file: UploadFile = File(...)): | |
current_datetime = datetime.now().strftime("%Y-%m-%d %H-%M-%S") | |
filename = f'meeting-transcription/meeting-transcript_{current_datetime}.md' | |
# Save file and convert to markdown | |
content = await file.read() | |
with open(f"{file.filename}", "wb") as docx_file: | |
docx_file.write(content) | |
with open(file.filename, "rb") as docx_file: | |
result = mammoth.convert_to_markdown(docx_file) | |
with open(filename, 'w', encoding='utf-8') as f: | |
f.write(result.value) | |
response = call_crew_kickoff(current_datetime) | |
output_filename = f"generated-brd/generated-brd_{current_datetime}.md" | |
with open(output_filename, 'w', encoding='utf-8') as f: | |
f.write(response) | |
return JSONResponse(content={"file_url": output_filename, "brd_content": response}) | |
def call_crew_kickoff(str_current_datetime): | |
# Setup CrewAI agents and tasks | |
mt_tool = FileReadTool(txt=f'./meeting-transcription/meeting-transcript_{str_current_datetime}.md') | |
semantic_search_resume = MDXSearchTool(mdx=f'./meeting-transcription/meeting-transcript_{str_current_datetime}.md') | |
with open(f'./meeting-transcription/meeting-transcript_{str_current_datetime}.md', 'r', encoding='utf-8') as file: | |
transcript_content = file.read() | |
cleaned_transcript_content = transcript_content.replace('\ufeff', '') | |
with open('./brd-template/brd-template.md', 'r', encoding='utf-8') as file: | |
brd_template_content = file.read() | |
cleaned_brd_template = brd_template_content.replace('\ufeff', '') | |
business_analyst = Agent( | |
role="Business Analyst", | |
goal="Effectively translate the meeting transcript and discussions into a well-structured BRD...", | |
tools=[mt_tool, semantic_search_resume], | |
allow_delegation=False, | |
verbose=True, | |
backstory="You come from a background in business analysis..." | |
) | |
subject_matter_expert = Agent( | |
role="Subject Matter Expert", | |
goal="Ensure the BRD accurately reflects the project's technical feasibility...", | |
tools=[mt_tool, semantic_search_resume], | |
allow_delegation=False, | |
verbose=True, | |
backstory="You possess in-depth knowledge and experience specific to the project's domain..." | |
) | |
analyze_meeting_for_brd = Task( | |
description="Analyze the meeting transcript and create a BRD...", | |
expected_output="A well-structured BRD...", | |
agent=business_analyst, | |
) | |
sme_technical_review = Task( | |
description="Review the BRD for technical accuracy...", | |
expected_output="Comprehensive and refined BRD document...", | |
agent=subject_matter_expert, | |
) | |
crew = Crew( | |
agents=[business_analyst, subject_matter_expert], | |
tasks=[analyze_meeting_for_brd, sme_technical_review], | |
verbose=2, | |
manager_llm=ChatOpenAI(temperature=0, model="gpt-3.5-turbo"), | |
process=Process.hierarchical, | |
memory=True, | |
) | |
result = crew.kickoff(inputs={'datetime': str_current_datetime}) | |
return result | |