Create arxiv_tool.py
Browse files- tools/arxiv_tool.py +92 -0
tools/arxiv_tool.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import arxiv
|
2 |
+
from datetime import datetime, timedelta
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
from typing import List, Dict
|
6 |
+
from smolagents import Tool
|
7 |
+
|
8 |
+
class ArxivSearchTool(Tool):
|
9 |
+
name = "search_arxiv"
|
10 |
+
description = "Search ArXiv for papers matching the query"
|
11 |
+
input_types = {"query": str, "max_results": int}
|
12 |
+
output_type = List[Dict]
|
13 |
+
|
14 |
+
def __call__(self, query: str = "artificial intelligence",
|
15 |
+
max_results: int = 50) -> List[Dict]:
|
16 |
+
try:
|
17 |
+
# Configure the search client
|
18 |
+
client = arxiv.Client()
|
19 |
+
|
20 |
+
# Create the search query
|
21 |
+
search = arxiv.Search(
|
22 |
+
query=query,
|
23 |
+
max_results=max_results,
|
24 |
+
sort_by=arxiv.SortCriterion.SubmittedDate
|
25 |
+
)
|
26 |
+
|
27 |
+
# Get results
|
28 |
+
results = []
|
29 |
+
for paper in client.results(search):
|
30 |
+
result = {
|
31 |
+
'title': paper.title,
|
32 |
+
'authors': [str(author) for author in paper.authors],
|
33 |
+
'summary': paper.summary,
|
34 |
+
'published': paper.published.strftime("%Y-%m-%d"),
|
35 |
+
'pdf_url': paper.pdf_url,
|
36 |
+
'entry_id': paper.entry_id,
|
37 |
+
'primary_category': paper.primary_category,
|
38 |
+
'categories': paper.categories
|
39 |
+
}
|
40 |
+
results.append(result)
|
41 |
+
|
42 |
+
return results
|
43 |
+
except Exception as e:
|
44 |
+
return [{"error": f"Error searching ArXiv: {str(e)}"}]
|
45 |
+
|
46 |
+
class LatestPapersTool(Tool):
|
47 |
+
name = "get_latest_papers"
|
48 |
+
description = "Get papers from the last N days from saved results"
|
49 |
+
input_types = {"days_back": int}
|
50 |
+
output_type = List[Dict]
|
51 |
+
|
52 |
+
def __call__(self, days_back: int = 1) -> List[Dict]:
|
53 |
+
papers = []
|
54 |
+
base_dir = "daily_papers"
|
55 |
+
|
56 |
+
# Get dates to check
|
57 |
+
dates = [
|
58 |
+
(datetime.now() - timedelta(days=i)).strftime("%Y-%m-%d")
|
59 |
+
for i in range(days_back)
|
60 |
+
]
|
61 |
+
|
62 |
+
# Load papers for each date
|
63 |
+
for date in dates:
|
64 |
+
file_path = os.path.join(base_dir, f"ai_papers_{date}.json")
|
65 |
+
if os.path.exists(file_path):
|
66 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
67 |
+
day_papers = json.load(f)
|
68 |
+
papers.extend(day_papers)
|
69 |
+
|
70 |
+
return papers
|
71 |
+
|
72 |
+
def save_daily_papers(output_dir: str = "daily_papers") -> List[Dict]:
|
73 |
+
"""Helper function to save daily papers - not exposed as a tool"""
|
74 |
+
os.makedirs(output_dir, exist_ok=True)
|
75 |
+
today = datetime.now().strftime("%Y-%m-%d")
|
76 |
+
|
77 |
+
arxiv_tool = ArxivSearchTool()
|
78 |
+
papers = arxiv_tool(
|
79 |
+
query='cat:cs.AI OR cat:cs.LG OR cat:cs.CL OR "artificial intelligence"',
|
80 |
+
max_results=100
|
81 |
+
)
|
82 |
+
|
83 |
+
today_papers = [
|
84 |
+
paper for paper in papers
|
85 |
+
if paper.get('published') == today
|
86 |
+
]
|
87 |
+
|
88 |
+
output_file = os.path.join(output_dir, f"ai_papers_{today}.json")
|
89 |
+
with open(output_file, 'w', encoding='utf-8') as f:
|
90 |
+
json.dump(today_papers, f, indent=2)
|
91 |
+
|
92 |
+
return today_papers
|