File size: 16,738 Bytes
3324de2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
from DepthEstimator import DepthEstimator
import numpy as np
from PIL import Image
import os
from GenerateCaptions import generate_caption
import re
from config import LOGS_DIR
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
import torch
from PIL import Image, ImageDraw, ImageFont
import spacy
import gc

class SoundMapper:
    def __init__(self):
        self.depth_estimator = DepthEstimator()
        # List of depth maps in dict["predicted_depth" ,"depth"] in (tensor, PIL.Image) format
        self.device = "cuda"
        # self.map_list = self.depth_estimator.estimate_depth(self.depth_estimator.image_dir) 
        self.map_list = None
        self.image_dir = self.depth_estimator.image_dir
        # self.nlp = spacy.load("en_core_web_sm")
        self.nlp = None
        self.dino = None
        self.dino_processor = None
        # self.dino = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-tiny").to(self.device)
        # self.dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-tiny")
    
    def _load_nlp(self):
        if self.nlp is None:
            self.nlp = spacy.load("en_core_web_sm")
        return self.nlp
    
    def _load_depth_maps(self):
        if self.map_list is None:
            self.map_list = self.depth_estimator.estimate_depth(self.depth_estimator.image_dir)
        return self.map_list
    
    def process_depth_maps(self) -> list:
        depth_maps = self._load_depth_maps()
        processed_maps = []
        for item in depth_maps:
            depth_map = item["depth"]
            depth_array = np.array(depth_map)
            normalization = depth_array / 255.0
            processed_maps.append({
                    "original": depth_map,
                    "normalization": normalization
                })
        return processed_maps
    
    # def create_depth_zone(self, processed_maps : list, num_zones = 3):
    #     zones_data = []
    #     for depth_data in processed_maps:
    #         normalized = depth_data["normalization"]
    #         thresholds = np.linspace(0, 1, num_zones+1)
    #         zones = []
    #         for i in range(num_zones):
    #             zone_mask = (normalized >= thresholds[i]) & (normalized < thresholds[i+1])
    #             zone_percentage = zone_mask.sum() / zone_mask.size
    #             zones.append({
    #                 "range": (thresholds[i], thresholds[i+1]),
    #                 "percentage": zone_percentage,
    #                 "mask": zone_mask
    #             })
    #         zones_data.append(zones)
    #     return zones_data
    
    def detect_sound_sources(self, caption_text: str) -> dict:
        """
        Extract nouns and their sound descriptions from caption text.
        Returns a dictionary mapping nouns to their descriptions.
        """
        sound_sources = {}
        nlp = self._load_nlp()
        
        print(f"\n[DEBUG] Beginning sound source detection")
        print(f"Raw caption text length: {len(caption_text)}")
        print(f"First 100 chars: {caption_text[:100]}...")
        
        # Split the caption by newlines to separate entries
        lines = caption_text.strip().split('\n')
        print(f"Found {len(lines)} lines after splitting")
        
        for i, line in enumerate(lines):
            # Skip empty lines
            if not line.strip():
                continue
                
            print(f"Processing line {i}: {line[:50]}{'...' if len(line) > 50 else ''}")
            
            # Check if line matches the expected format (Noun: description)
            if ':' in line:
                parts = line.split(':', 1)  # Split only on the first colon
                
                # Clean up the noun part - remove numbers and leading/trailing whitespace
                noun_part = parts[0].strip().lower()
                # Remove list numbering (e.g., "1. ", "2. ", etc.)
                noun_part = re.sub(r'^\d+\.\s*', '', noun_part)
                
                description = parts[1].strip()
                
                # Clean any markdown formatting
                noun = re.sub(r'[*()]', '', noun_part).strip()
                description = re.sub(r'[*()]', '', description).strip()
                
                # Separate the description at em dash if present
                if ' β€” ' in description:
                    description = description.split(' β€” ', 1)[0].strip()
                elif ' - ' in description:
                    description = description.split(' - ', 1)[0].strip()
                    
                print(f"  - Found potential noun: '{noun}' with description: '{description[:30]}...'")
                
                # Skip if noun contains invalid characters or is too short
                if '##' not in noun and len(noun) > 1 and noun[0].isalpha():
                    sound_sources[noun] = description
                    print(f"    √ Added to sound sources")
                else:
                    print(f"    Γ— Skipped (invalid format)")
        
        # If no structured format found, try to extract nouns from the text
        if not sound_sources:
            print("No structured format found, falling back to noun extraction")
            all_nouns = []
            doc = nlp(caption_text)
            for token in doc:
                if token.pos_ == "NOUN" and len(token.text) > 1:
                    if token.text[0].isalpha():
                        all_nouns.append(token.text.lower())
                        print(f"  - Extracted noun: '{token.text.lower()}'")
                        
            for noun in all_nouns:
                sound_sources[noun] = ""  # Empty description
        
        print(f"[DEBUG] Final detected sound sources: {list(sound_sources.keys())}")
        return sound_sources
    
    def map_bbox_to_depth_zone(self, bbox, depth_map, num_zones=3):
        x1, y1, x2, y2 = [int(coord) for coord in bbox]

        height, width = depth_map.shape
        x1, y1 = max(0, x1), max(0, y1)
        x2, y2 = min(width, x2), min(height, y2)

        depth_roi = depth_map[y1:y2, x1:x2]

        if depth_roi.size == 0:
            return num_zones - 1

        mean_depth = np.mean(depth_roi)

        thresholds = self.create_histogram_depth_zones(depth_map, num_zones)
        for i in range(num_zones):
            if thresholds[i] <= mean_depth < thresholds[i+1]:
                return i
        return num_zones - 1
    
    def detect_objects(self, nouns : list, image: Image):
        filtered_nouns = []
        for noun in nouns:
            if '##' not in noun and len(noun) > 1 and noun[0].isalpha():
                filtered_nouns.append(noun)
        
        print(f"Detecting objects for nouns: {filtered_nouns}")
        
        if self.dino is None:
            self.dino = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base").to(self.device)
            self.dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base")
        else:
            self.dino = self.dino.to(self.device)

        text_prompt = " . ".join(filtered_nouns)
        inputs = self.dino_processor(images=image, text=text_prompt, return_tensors="pt").to(self.device)
        
        with torch.no_grad():
            outputs = self.dino(**inputs)
            results = self.dino_processor.post_process_grounded_object_detection(
                outputs,
                inputs.input_ids,
                box_threshold=0.25, 
                text_threshold=0.25,
                target_sizes=[image.size[::-1]]
            )
        
        result = results[0]
        labels = result["labels"]
        bboxes = result["boxes"]
        
        clean_labels = []
        for label in labels:
            clean_label = re.sub(r'##\w+', '', label)
            clean_label = self._split_combined_words(clean_label, filtered_nouns)
            clean_labels.append(clean_label)
        
        self.dino = self.dino.to("cpu")
        torch.cuda.empty_cache()
        del inputs, outputs, results

        print(f"Detected objects: {clean_labels}")
        
        return (clean_labels, bboxes)
    
    def _split_combined_words(self, text, nouns=None):
        nlp = self._load_nlp()
        if nouns is None:
            known_words = set()
            doc = nlp(text)
            for token in doc:
                if token.pos_ == "NOUN" and len(token.text) > 1:
                    known_words.add(token.text.lower())
        else:
            known_words = set(nouns)

        result = []
        for word in text.split():
            if word in known_words:
                result.append(word)
                continue

            found = False
            for known in known_words:
                if known in word and len(known) > 2: 
                    result.append(known)
                    found = True

            if not found:
                result.append(word)
                
        return " ".join(result)
        
    def process_dino_labels(self, labels):
        processed_labels = []
        nlp = self._load_nlp()
        
        for label in labels:
            if label.startswith('##'):
                continue
            label = re.sub(r'[*()]', '', label).strip()

            parts = label.split()
            for part in parts:
                if part.startswith('##'):
                    continue
                doc = nlp(part)
                for token in doc:
                    if token.pos_ == "NOUN" and len(token.text) > 1:
                        processed_labels.append(token.text.lower())

        unique_labels = []
        for label in processed_labels:
            if label not in unique_labels:
                unique_labels.append(label)
                
        return unique_labels
    

    def create_histogram_depth_zones(self, depth_map, num_zones = 3):
        # using 50 bins because it is faster
        hist, bin_edge = np.histogram(depth_map.flatten(), bins=50, range=(0, 1))
        cumulative = np.cumsum(hist) / np.sum(hist)
        thresholds = [0.0]
        for i in range(1, num_zones):
            target = i / num_zones
            idx = np.argmin(np.abs(cumulative - target))
            thresholds.append(bin_edge[idx + 1])
        thresholds.append(1.0)
    
        return thresholds


    def analyze_object_depths(self, image_path, depth_map, lat, lon, caption_data=None, all_objects=False):
        image = Image.open(image_path)
            
        if caption_data is None:
            caption = generate_caption(lat, lon)
            if not caption:
                print(f"Failed to generate caption for {image_path}")
                return []
            caption_text = caption.get("sound_description", "")
        else:
            caption_text = caption_data.get("sound_description", "")
        
        # Debug: Print the raw caption text
        print(f"\n[DEBUG] Raw caption text for {os.path.basename(image_path)}:")
        print(caption_text)
        print("-" * 50)
            
        if not caption_text:
            print(f"No caption text available for {image_path}")
            return []

        # Extract nouns and their sound descriptions
        sound_sources = self.detect_sound_sources(caption_text)
        
        # Debug: Print the extracted sound sources
        print(f"[DEBUG] Extracted sound sources:")
        for noun, desc in sound_sources.items():
            print(f"  - {noun}: {desc}")
        print("-" * 50)
        
        if not sound_sources:
            print(f"No sound sources detected in caption for {image_path}")
            return []

        # Get list of nouns only for object detection
        nouns = list(sound_sources.keys())
        
        # Debug: Print the list of nouns being used for detection
        print(f"[DEBUG] Nouns for object detection: {nouns}")
        print("-" * 50)
        
        labels, bboxes = self.detect_objects(nouns, image)
        if len(labels) == 0 or len(bboxes) == 0:
            print(f"No objects detected in {image_path}")
            return []
            
        object_data = []
        known_objects = set(nouns) if nouns else set()
        
        for i, (label, bbox) in enumerate(zip(labels, bboxes)):
            if '##' in label:
                continue

            x1, y1, x2, y2 = [int(coord) for coord in bbox]
            height, width = depth_map.shape
            x1, y1 = max(0, x1), max(0, y1)
            x2, y2 = min(width, x2), min(height, y2)

            depth_roi = depth_map[y1:y2, x1:x2]
            if depth_roi.size == 0:
                continue
                
            mean_depth = np.mean(depth_roi)
            
            matched_noun = None
            matched_desc = None
            
            for word in label.split():
                word = word.lower()
                if word in sound_sources:
                    matched_noun = word
                    matched_desc = sound_sources[word]
                    break
            if matched_noun is None:
                for noun in sound_sources:
                    if noun in label.lower():
                        matched_noun = noun
                        matched_desc = sound_sources[noun]
                        break
            if matched_noun is None:
                for word in label.split():
                    if len(word) > 1 and word[0].isalpha() and '##' not in word:
                        matched_noun = word.lower()
                        matched_desc = ""  # No description available
                        break
            
            if matched_noun:
                thresholds = self.create_histogram_depth_zones(depth_map, num_zones=3)
                zone = 0  # The default is 0 which is the closest zone
                for i in range(3):
                    if thresholds[i] <= mean_depth < thresholds[i+1]:
                        zone = i
                        break
                        
                object_data.append({
                    "original_label": matched_noun,
                    "bbox": bbox.tolist(),
                    "depth_zone": zone,
                    "zone_description": ["near", "medium", "far"][zone],
                    "mean_depth": mean_depth,
                    "weight": 1.0 - mean_depth,
                    "sound_description": matched_desc
                })
        if all_objects:
            object_data.sort(key=lambda x: x["mean_depth"])
            return object_data
        else:
            if not object_data:
                return []
            closest_object = min(object_data, key=lambda x: x["mean_depth"])
            return [closest_object]
    
    def cleanup(self):
        if hasattr(self, 'depth_estimator') and self.depth_estimator is not None:
            del self.depth_estimator
            self.depth_estimator = None

        if self.map_list is not None:
            del self.map_list
            self.map_list = None

        if self.dino is not None:
            self.dino = self.dino.to("cpu")
            del self.dino
            self.dino = None
            del self.dino_processor
            self.dino_processor = None
            
        if self.nlp is not None:
            del self.nlp
            self.nlp = None
        torch.cuda.empty_cache()
        gc.collect()

    def test_object_depth_analysis(self):
        """
        Test the object depth analysis on all images in the directory.
        """
        # Process depth maps first
        processed_maps = self.process_depth_maps()
        
        # Get list of original image paths
        image_dir = self.depth_estimator.image_dir
        image_paths = [os.path.join(image_dir, f) for f in os.listdir(image_dir) if f.endswith(".jpg")]
        
        results = []
        
        # For each image and its corresponding depth map
        for i, (image_path, processed_map) in enumerate(zip(image_paths, processed_maps)):
            # Extract the normalized depth map
            depth_map = processed_map["normalization"]
            
            # Analyze objects and their depths
            object_depths = self.analyze_object_depths(image_path, depth_map)
            
            # Store results
            results.append({
                "image_path": image_path,
                "object_depths": object_depths
            })
            
            # Print some information for debugging
            print(f"Analyzed {image_path}:")
            for obj in object_depths:
                print(f"  - {obj['original_label']} (Zone: {obj['zone_description']})")
        
        return results