Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,9 +4,7 @@ import numpy as np
|
|
4 |
import random
|
5 |
import spaces
|
6 |
import torch
|
7 |
-
from diffusers import
|
8 |
-
#from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
9 |
-
#from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
10 |
|
11 |
dtype = torch.bfloat16
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -15,17 +13,25 @@ pipe = SanaSprintPipeline.from_pretrained(
|
|
15 |
"Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers",
|
16 |
torch_dtype=torch.bfloat16
|
17 |
)
|
|
|
|
|
|
|
|
|
18 |
pipe.to(device)
|
|
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
MAX_IMAGE_SIZE = 1024
|
21 |
|
22 |
@spaces.GPU(duration=5)
|
23 |
-
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)):
|
24 |
if randomize_seed:
|
25 |
seed = random.randint(0, MAX_SEED)
|
26 |
generator = torch.Generator().manual_seed(seed)
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
prompt=prompt,
|
30 |
guidance_scale=guidance_scale,
|
31 |
num_inference_steps=num_inference_steps,
|
@@ -37,12 +43,21 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidan
|
|
37 |
print(img)
|
38 |
return img.images[0], seed
|
39 |
|
40 |
-
examples
|
41 |
-
|
42 |
-
"a
|
43 |
-
"
|
|
|
44 |
]
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
css="""
|
47 |
#col-container {
|
48 |
margin: 0 auto;
|
@@ -53,7 +68,15 @@ css="""
|
|
53 |
with gr.Blocks(css=css) as demo:
|
54 |
|
55 |
with gr.Column(elem_id="col-container"):
|
56 |
-
gr.Markdown(f"""# Sana Sprint
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
with gr.Row():
|
59 |
|
@@ -117,18 +140,29 @@ with gr.Blocks(css=css) as demo:
|
|
117 |
value=2,
|
118 |
)
|
119 |
|
120 |
-
gr.
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
gr.on(
|
129 |
triggers=[run_button.click, prompt.submit],
|
130 |
fn = infer,
|
131 |
-
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
132 |
outputs = [result, seed]
|
133 |
)
|
134 |
|
|
|
4 |
import random
|
5 |
import spaces
|
6 |
import torch
|
7 |
+
from diffusers import SanaSprintPipeline
|
|
|
|
|
8 |
|
9 |
dtype = torch.bfloat16
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
13 |
"Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers",
|
14 |
torch_dtype=torch.bfloat16
|
15 |
)
|
16 |
+
pipe2 = SanaSprintPipeline.from_pretrained(
|
17 |
+
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers",
|
18 |
+
torch_dtype=torch.bfloat16
|
19 |
+
)
|
20 |
pipe.to(device)
|
21 |
+
pipe2.to(device)
|
22 |
MAX_SEED = np.iinfo(np.int32).max
|
23 |
MAX_IMAGE_SIZE = 1024
|
24 |
|
25 |
@spaces.GPU(duration=5)
|
26 |
+
def infer(prompt, model_size, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)):
|
27 |
if randomize_seed:
|
28 |
seed = random.randint(0, MAX_SEED)
|
29 |
generator = torch.Generator().manual_seed(seed)
|
30 |
|
31 |
+
# Choose the appropriate model based on selected model size
|
32 |
+
selected_pipe = pipe if model_size == "0.6B" else pipe2
|
33 |
+
|
34 |
+
img = selected_pipe(
|
35 |
prompt=prompt,
|
36 |
guidance_scale=guidance_scale,
|
37 |
num_inference_steps=num_inference_steps,
|
|
|
43 |
print(img)
|
44 |
return img.images[0], seed
|
45 |
|
46 |
+
# Different examples for each model size
|
47 |
+
examples_06B = [
|
48 |
+
"a majestic castle on a floating island",
|
49 |
+
"a robotic chef cooking in a futuristic kitchen",
|
50 |
+
"a magical forest with glowing mushrooms"
|
51 |
]
|
52 |
|
53 |
+
examples_16B = [
|
54 |
+
"a steampunk city with airships in the sky",
|
55 |
+
"a photorealistic fox in a snowy landscape",
|
56 |
+
"an underwater temple with ancient ruins"
|
57 |
+
]
|
58 |
+
|
59 |
+
# We'll use the appropriate set based on the model selection
|
60 |
+
|
61 |
css="""
|
62 |
#col-container {
|
63 |
margin: 0 auto;
|
|
|
68 |
with gr.Blocks(css=css) as demo:
|
69 |
|
70 |
with gr.Column(elem_id="col-container"):
|
71 |
+
gr.Markdown(f"""# Sana Sprint""")
|
72 |
+
|
73 |
+
# Add radio button for model selection
|
74 |
+
model_size = gr.Radio(
|
75 |
+
label="Model Size",
|
76 |
+
choices=["0.6B", "1.6B"],
|
77 |
+
value="0.6B",
|
78 |
+
interactive=True
|
79 |
+
)
|
80 |
|
81 |
with gr.Row():
|
82 |
|
|
|
140 |
value=2,
|
141 |
)
|
142 |
|
143 |
+
with gr.Row():
|
144 |
+
examples_container = gr.Examples(
|
145 |
+
examples = examples_06B, # Start with 0.6B examples
|
146 |
+
fn = infer,
|
147 |
+
inputs = [prompt, model_size],
|
148 |
+
outputs = [result, seed],
|
149 |
+
cache_examples="lazy",
|
150 |
+
label="Example Prompts"
|
151 |
+
)
|
152 |
+
|
153 |
+
# Update examples when model size changes
|
154 |
+
def update_examples(model_choice):
|
155 |
+
if model_choice == "0.6B":
|
156 |
+
return gr.Examples.update(examples=examples_06B)
|
157 |
+
else:
|
158 |
+
return gr.Examples.update(examples=examples_16B)
|
159 |
+
|
160 |
+
model_size.change(fn=update_examples, inputs=[model_size], outputs=[examples_container])
|
161 |
|
162 |
gr.on(
|
163 |
triggers=[run_button.click, prompt.submit],
|
164 |
fn = infer,
|
165 |
+
inputs = [prompt, model_size, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], # Add model_size to inputs
|
166 |
outputs = [result, seed]
|
167 |
)
|
168 |
|