multimodalart HF Staff commited on
Commit
c7c8e9e
·
verified ·
1 Parent(s): e2abd31

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -18
app.py CHANGED
@@ -4,9 +4,7 @@ import numpy as np
4
  import random
5
  import spaces
6
  import torch
7
- from diffusers import SanaSprintPipeline
8
- #from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
9
- #from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
10
 
11
  dtype = torch.bfloat16
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
@@ -15,17 +13,25 @@ pipe = SanaSprintPipeline.from_pretrained(
15
  "Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers",
16
  torch_dtype=torch.bfloat16
17
  )
 
 
 
 
18
  pipe.to(device)
 
19
  MAX_SEED = np.iinfo(np.int32).max
20
  MAX_IMAGE_SIZE = 1024
21
 
22
  @spaces.GPU(duration=5)
23
- def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)):
24
  if randomize_seed:
25
  seed = random.randint(0, MAX_SEED)
26
  generator = torch.Generator().manual_seed(seed)
27
 
28
- img = pipe(
 
 
 
29
  prompt=prompt,
30
  guidance_scale=guidance_scale,
31
  num_inference_steps=num_inference_steps,
@@ -37,12 +43,21 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidan
37
  print(img)
38
  return img.images[0], seed
39
 
40
- examples = [
41
- "a tiny astronaut hatching from an egg on the moon",
42
- "a cat holding a sign that says hello world",
43
- "an anime illustration of a wiener schnitzel",
 
44
  ]
45
 
 
 
 
 
 
 
 
 
46
  css="""
47
  #col-container {
48
  margin: 0 auto;
@@ -53,7 +68,15 @@ css="""
53
  with gr.Blocks(css=css) as demo:
54
 
55
  with gr.Column(elem_id="col-container"):
56
- gr.Markdown(f"""# Sana Sprint 0.6B""")
 
 
 
 
 
 
 
 
57
 
58
  with gr.Row():
59
 
@@ -117,18 +140,29 @@ with gr.Blocks(css=css) as demo:
117
  value=2,
118
  )
119
 
120
- gr.Examples(
121
- examples = examples,
122
- fn = infer,
123
- inputs = [prompt],
124
- outputs = [result, seed],
125
- cache_examples="lazy"
126
- )
 
 
 
 
 
 
 
 
 
 
 
127
 
128
  gr.on(
129
  triggers=[run_button.click, prompt.submit],
130
  fn = infer,
131
- inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
132
  outputs = [result, seed]
133
  )
134
 
 
4
  import random
5
  import spaces
6
  import torch
7
+ from diffusers import SanaSprintPipeline
 
 
8
 
9
  dtype = torch.bfloat16
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
13
  "Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers",
14
  torch_dtype=torch.bfloat16
15
  )
16
+ pipe2 = SanaSprintPipeline.from_pretrained(
17
+ "Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers",
18
+ torch_dtype=torch.bfloat16
19
+ )
20
  pipe.to(device)
21
+ pipe2.to(device)
22
  MAX_SEED = np.iinfo(np.int32).max
23
  MAX_IMAGE_SIZE = 1024
24
 
25
  @spaces.GPU(duration=5)
26
+ def infer(prompt, model_size, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)):
27
  if randomize_seed:
28
  seed = random.randint(0, MAX_SEED)
29
  generator = torch.Generator().manual_seed(seed)
30
 
31
+ # Choose the appropriate model based on selected model size
32
+ selected_pipe = pipe if model_size == "0.6B" else pipe2
33
+
34
+ img = selected_pipe(
35
  prompt=prompt,
36
  guidance_scale=guidance_scale,
37
  num_inference_steps=num_inference_steps,
 
43
  print(img)
44
  return img.images[0], seed
45
 
46
+ # Different examples for each model size
47
+ examples_06B = [
48
+ "a majestic castle on a floating island",
49
+ "a robotic chef cooking in a futuristic kitchen",
50
+ "a magical forest with glowing mushrooms"
51
  ]
52
 
53
+ examples_16B = [
54
+ "a steampunk city with airships in the sky",
55
+ "a photorealistic fox in a snowy landscape",
56
+ "an underwater temple with ancient ruins"
57
+ ]
58
+
59
+ # We'll use the appropriate set based on the model selection
60
+
61
  css="""
62
  #col-container {
63
  margin: 0 auto;
 
68
  with gr.Blocks(css=css) as demo:
69
 
70
  with gr.Column(elem_id="col-container"):
71
+ gr.Markdown(f"""# Sana Sprint""")
72
+
73
+ # Add radio button for model selection
74
+ model_size = gr.Radio(
75
+ label="Model Size",
76
+ choices=["0.6B", "1.6B"],
77
+ value="0.6B",
78
+ interactive=True
79
+ )
80
 
81
  with gr.Row():
82
 
 
140
  value=2,
141
  )
142
 
143
+ with gr.Row():
144
+ examples_container = gr.Examples(
145
+ examples = examples_06B, # Start with 0.6B examples
146
+ fn = infer,
147
+ inputs = [prompt, model_size],
148
+ outputs = [result, seed],
149
+ cache_examples="lazy",
150
+ label="Example Prompts"
151
+ )
152
+
153
+ # Update examples when model size changes
154
+ def update_examples(model_choice):
155
+ if model_choice == "0.6B":
156
+ return gr.Examples.update(examples=examples_06B)
157
+ else:
158
+ return gr.Examples.update(examples=examples_16B)
159
+
160
+ model_size.change(fn=update_examples, inputs=[model_size], outputs=[examples_container])
161
 
162
  gr.on(
163
  triggers=[run_button.click, prompt.submit],
164
  fn = infer,
165
+ inputs = [prompt, model_size, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], # Add model_size to inputs
166
  outputs = [result, seed]
167
  )
168