Spaces:
Running
Running
File size: 7,601 Bytes
85910a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import streamlit as st
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.ensemble import ExtraTreesClassifier
# Load and preprocess the data
data = pd.read_csv('dataset.csv')
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(data['text'])
y = data['label']
# Train the model
classifier = ExtraTreesClassifier(n_estimators=50, random_state=2)
classifier.fit(X, y)
# Define the prediction function
def predict(text):
if not text:
return [{'label': 'Error', 'score': 0}]
text_vectorized = vectorizer.transform([text])
prediction = classifier.predict(text_vectorized)[0]
if prediction == 'AI':
score = classifier.predict_proba(text_vectorized)[0][0]
else:
score = 1 - classifier.predict_proba(text_vectorized)[0][1]
response = [
{
'label': prediction,
'score': round(float(score), 4)
}
]
return response
# Create a Streamlit app
def main():
st.set_page_config(
page_title="AI Detector",
page_icon="π€",
layout="wide",
)
page_bg_img = """
<style>
[data-testid="stAppViewContainer"] {
background-image: url("https://images.unsplash.com/photo-1698945746290-a9d1cc575e77?auto=format&fit=crop&q=80&w=1946&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D");
background-size: cover;
background-repeat: no-repeat;
background-position: center;
}
[data-testid="stHeader"] {
background-color: transparent;
}
data-testid="stToolbar"{
right: 2rem;
}
</style>
"""
st.markdown(page_bg_img, unsafe_allow_html=True)
# Initialize session state
if 'started' not in st.session_state:
st.session_state.started = False
# Check if the "Get Started" button is clicked
if not st.session_state.started:
st.markdown("<h1 style='display: flex; text-align:center;justify-content: center; align-items: center; font-size: 50px ; height: 55vh;'>Welcome to AI Content Detector</h1>", unsafe_allow_html=True)
st.markdown("")
columns = st.columns((2, 1, 2))
# Use custom CSS to style the button
button_pressed = """
<style>
div.stButton > button:first-child {
background-color: #000;
border: 1px solid #000;
border-radius: 20px;
color: #fff;
cursor: pointer;
display: inline-block;
font-family: ITCAvantGardeStd-Bk, Arial, sans-serif;
font-size: 20px;
font-weight: 50;
line-height: 40px;
padding: 12px 40px;
text-align: center;
text-transform: none;
user-select: none;
-webkit-user-select: none;
width: max-content;
}
div.stButton > button:first-child:hover {
background-color: #ffffff;
border: 1px solid #000;
color: #000000;
font-family: monospace;
}
</style>
"""
st.markdown(button_pressed, unsafe_allow_html=True)
button_pressed = columns[1].button("Get Started", key="get_started_button", on_click=lambda: st.session_state.__setitem__('started', True))
if button_pressed:
st.session_state.started = True
st.markdown(
"""
<script>
var button = document.querySelector('.stButton button.button-50');
button.style.backgroundColor = "#000"; // Change background color to black
</script>
""",
unsafe_allow_html=True,
)
# If the app has been started
if st.session_state.started:
st.markdown("")
# Use HTML to create a heading in the main app
st.markdown("<h1 style='text-align:center;font-size: 50px;height: 15vh;'>Detect AI Content</h1>", unsafe_allow_html=True)
# Add some space
st.markdown("<br>", unsafe_allow_html=True)
# Create a text input with a label
text = st.text_area(" ", placeholder="Type your text here", height=200)
# Add space between input and button
st.markdown("<br>", unsafe_allow_html=True)
# Use CSS to style the button
button_style = """
<style>
div.stButton > button:first-child {
background-color: #000;
color: #fff;
width: 150px;
Height: 50px;
display: flex;
float: right;
color: white;
font-size: 18px;
border: none;
cursor: pointer;
margin-right: 16cm;
}
div.stButton > button:first-child:hover {
background-color: #fff;
color: #000000;
border: 1px solid #000;
}
</style>
"""
st.markdown(button_style, unsafe_allow_html=True)
# Create a button to trigger the analysis
if st.button("Detect Text"):
result = predict(text)
st.markdown("<hr>", unsafe_allow_html=True)
st.markdown("<h2>Result:</h2>", unsafe_allow_html=True)
if result[0]['label'] == 'Error':
label_color = "color: #FF2400;"
progress_color = "#FF2400"
elif result[0]['label'] == 'AI':
label_color = "color: #FF2400;"
progress_color = "#FF2400"
else:
label_color = "color: #00B140;"
progress_color = "#00B140"
# Use HTML to style the prediction result
if result[0]['label'] == 'Error':
result_html = f"<p style='font-size: 30px; font-weight: bold; {label_color}'>Error: Please enter text..π</p>"
elif result[0]['label'] == 'AI':
result_html = f"<p style='font-size: 30px; font-weight: bold; {label_color}'>Predicted Label: {result[0]['label']} π’</p>"
else:
result_html = f"<p style='font-size: 30px; font-weight: bold; {label_color}'>Predicted Label: {result[0]['label']} π</p>"
st.markdown(result_html, unsafe_allow_html=True)
if result[0]['label'] != 'Error':
# Add a status bar for the Confidence Score with percentages
confidence_percentage = result[0]['score'] * 100
score_html = f"<p style='font-size: 25px;{label_color}'>This text is likely to be written by {result[0]['label']} is {confidence_percentage}%</p>"
st.markdown(score_html, unsafe_allow_html=True)
progress_bar_css = f"""
<style>
.stProgress > div > div > div > div {{
background-color: {progress_color};
}}
</style>
"""
st.markdown(progress_bar_css, unsafe_allow_html=True)
st.progress(result[0]['score'])
st.markdown(
"""
<div style="position: absolute; bottom: -5.8cm;">
<b color: #000000;">Site is not optimize for mobile view.</b>
</div>
""",
unsafe_allow_html=True
)
if __name__ == "__main__":
main()
|