Spaces:
Running
Running
File size: 14,175 Bytes
85910a3 5f25888 85910a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import streamlit as st
import torch
import torch.hub
import re
import os
# --- Set Page Config First ---
st.set_page_config(page_title="AI Text Detector", layout="centered")
# --- Configuration ---
MODEL1_PATH = "modernbert.bin" # Make sure this file is in the same directory or provide the full path
MODEL2_URL = "https://huggingface.co./mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12"
MODEL3_URL = "https://huggingface.co./mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed22"
BASE_MODEL = "answerdotai/ModernBERT-base"
NUM_LABELS = 41
# --- Device Setup ---
@st.cache_resource
def get_device():
"""Gets the appropriate torch device."""
return torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# --- Inject Custom CSS for highlighting ---
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Roboto+Mono:wght@400;700&display=swap');
body, .stTextArea textarea, .stMarkdown, .stButton button {
font-family: 'Roboto Mono', sans-serif !important;
}
.stTextArea textarea {
border: 2px solid #4CAF50;
border-radius: 10px;
font-size: 16px; /* Adjusted for better fit */
padding: 15px;
background-color: #f0fff0; /* Light green background */
}
.stButton button {
border-radius: 10px;
border: 2px solid #4CAF50;
padding: 10px 24px;
width: 100%;
font-weight: bold;
background-color: #4CAF50;
color: white;
}
.stButton button:hover {
background-color: #45a049;
color: white;
border-color: #45a049;
}
.result-box {
border-radius: 10px;
border: 2px solid #4CAF50;
font-size: 18px;
padding: 20px;
margin-top: 20px;
text-align: center;
background-color: #f9f9f9;
box-shadow: 0px 0px 5px rgba(0,0,0,0.1);
}
.highlight-human {
color: #4CAF50 !important; /* Use !important to override potential conflicts */
font-weight: bold;
background: rgba(76, 175, 80, 0.2);
padding: 5px 8px; /* Added padding */
border-radius: 8px;
display: inline-block; /* Ensures padding and background apply correctly */
}
.highlight-ai {
color: #FF5733 !important; /* Use !important */
font-weight: bold;
background: rgba(255, 87, 51, 0.2);
padding: 5px 8px; /* Added padding */
border-radius: 8px;
display: inline-block; /* Ensures padding and background apply correctly */
}
.footer {
text-align: center;
margin-top: 50px;
font-weight: bold;
font-size: 16px; /* Adjusted size */
color: #555; /* Slightly muted color */
}
</style>
""", unsafe_allow_html=True)
DEVICE = get_device()
# Now, we can safely continue with the rest of the code
# --- Model and Tokenizer Loading (Cached) ---
@st.cache_resource
def load_tokenizer(model_name):
"""Loads the tokenizer."""
st.info(f"Loading tokenizer: {model_name}...")
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
st.info("Tokenizer loaded.")
return tokenizer
@st.cache_resource
def load_model(model_path_or_url, base_model, num_labels, is_url=False, _device=DEVICE):
"""Loads a sequence classification model from local path or URL."""
from transformers import AutoModelForSequenceClassification
model_name = os.path.basename(model_path_or_url) if not is_url else model_path_or_url.split('/')[-1]
st.info(f"Loading model structure: {base_model}...")
# Load the base model architecture with the desired number of labels.
# The classification head will be randomly initialized initially.
model = AutoModelForSequenceClassification.from_pretrained(base_model, num_labels=num_labels)
st.info(f"Loading model weights: {model_name}...")
try:
if is_url:
# Load state dict from URL (usually safer as HF handles download/caching)
state_dict = torch.hub.load_state_dict_from_url(model_path_or_url, map_location=_device, progress=True)
else:
# Load state dict from local file
if not os.path.exists(model_path_or_url):
st.error(f"Model file not found at {model_path_or_url}. Please ensure it's in the correct location.")
st.stop() # Stop execution if local model is missing
# --- FIX APPLIED HERE ---
# Load state dict from local path.
# Set weights_only=False because the .bin file likely contains more than just weights
# and PyTorch 2.6+ defaults to weights_only=True for security.
# WARNING: Only use weights_only=False if you TRUST the source of the .bin file,
# as it can execute arbitrary code.
st.warning(f"Loading '{model_name}' with weights_only=False. Ensure this file is from a trusted source.")
state_dict = torch.load(model_path_or_url, map_location=_device, weights_only=False)
# --- END FIX ---
# Load the state dictionary into the model structure.
# This should overwrite the randomly initialized classification head
# if the state_dict contains the trained classifier weights.
# The warning "Some weights were not initialized..." might still appear
# but is often ignorable if loading succeeds without key errors.
model.load_state_dict(state_dict)
model.to(_device).eval() # Set model to evaluation mode
st.info(f"Model {model_name} loaded and moved to {_device}.")
return model
except Exception as e:
st.error(f"Error loading model {model_name}: {e}")
# Display the full traceback for debugging if needed
# import traceback
# st.error(traceback.format_exc())
st.stop() # Stop execution on model loading error
# --- Label Mapping ---
LABEL_MAPPING = {
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b',
11: 'flan_t5_base', 12: 'flan_t5_large', 13: 'flan_t5_small',
14: 'flan_t5_xl', 15: 'flan_t5_xxl', 16: 'gemma-7b-it', 17: 'gemma2-9b-it',
18: 'gpt-3.5-turbo', 19: 'gpt-35', 20: 'gpt4', 21: 'gpt4o',
22: 'gpt_j', 23: 'gpt_neox', 24: 'human', 25: 'llama3-70b', 26: 'llama3-8b',
27: 'mixtral-8x7b', 28: 'opt_1.3b', 29: 'opt_125m', 30: 'opt_13b',
31: 'opt_2.7b', 32: 'opt_30b', 33: 'opt_350m', 34: 'opt_6.7b',
35: 'opt_iml_30b', 36: 'opt_iml_max_1.3b', 37: 't0_11b', 38: 't0_3b',
39: 'text-davinci-002', 40: 'text-davinci-003'
}
HUMAN_LABEL_INDEX = 24 # Assuming 'human' is always index 24
# --- Text Processing Functions ---
def clean_text(text):
"""Cleans the input text using regex."""
if not isinstance(text, str): # Basic type check
return ""
text = text.replace("\r\n", "\n").replace("\r", "\n")
text = re.sub(r"\n\s*\n+", "\n\n", text)
text = re.sub(r"[ \t]+", " ", text)
# Improved handling for hyphenated words broken by newline: handles potential space after hyphen
text = re.sub(r"(\w+)-\s*\n\s*(\w+)", r"\1\2", text)
text = re.sub(r"(?<!\n)\n(?!\n)", " ", text) # Replace single newlines with spaces
text = text.strip()
return text
def classify_text(text, tokenizer, model_1, model_2, model_3, device, label_mapping, human_label_index):
"""Classifies the text using the ensemble of models."""
# Ensure models are loaded before proceeding
if not all([model_1, model_2, model_3, tokenizer]):
st.error("One or more models/tokenizer failed to load. Cannot classify.")
return {"error": True, "message": "Model loading failed."}
cleaned_text = clean_text(text)
if not cleaned_text: # Check after cleaning
# Don't show a warning here, just return None or an indicator for no text
# st.warning("Please enter some text to analyze.")
return None # Indicate no classification needed for empty/whitespace text
try:
inputs = tokenizer(
cleaned_text,
return_tensors="pt",
truncation=True,
padding=True, # Pad to max_length or model max length
max_length=tokenizer.model_max_length # Ensure consistent length
).to(device)
with torch.no_grad():
logits_1 = model_1(**inputs).logits
logits_2 = model_2(**inputs).logits
logits_3 = model_3(**inputs).logits
softmax_1 = torch.softmax(logits_1, dim=1)
softmax_2 = torch.softmax(logits_2, dim=1)
softmax_3 = torch.softmax(logits_3, dim=1)
# Ensemble by averaging probabilities
averaged_probabilities = (softmax_1 + softmax_2 + softmax_3) / 3
probabilities = averaged_probabilities[0].cpu() # Move to CPU for numpy/python processing
# Ensure human_label_index is valid
if not (0 <= human_label_index < len(probabilities)):
st.error(f"Internal Error: Invalid human_label_index ({human_label_index}) for probability tensor size ({len(probabilities)}).")
return {"error": True, "message": "Configuration error."}
# Separate human vs AI probability
human_prob = probabilities[human_label_index].item() * 100
# Calculate AI probability (sum of all non-human labels)
# Create a mask to exclude the human label index
mask = torch.ones_like(probabilities, dtype=torch.bool)
mask[human_label_index] = False
ai_total_prob = probabilities[mask].sum().item() * 100
# If total prob doesn't sum roughly to 100, something might be off, but proceed.
# Note: Due to potential floating point inaccuracies or model quirks,
# human_prob + ai_total_prob might not be *exactly* 100.
# Find the most likely AI model among the non-human labels
# Create a temporary tensor with human prob zeroed out to find AI max
ai_probs_only = probabilities.clone()
ai_probs_only[human_label_index] = -float('inf') # Set human prob to neg infinity to ensure it's not chosen as max AI
ai_argmax_index = torch.argmax(ai_probs_only).item()
ai_argmax_model = label_mapping.get(ai_argmax_index, f"Unknown AI (Index {ai_argmax_index})")
# Determine final classification
# Use a small tolerance for comparison if needed, but direct comparison is usually fine
if human_prob >= ai_total_prob:
return {"is_human": True, "probability": human_prob, "model": "Human"}
else:
# Return the total AI probability, but name the single most likely AI model
return {"is_human": False, "probability": ai_total_prob, "model": ai_argmax_model}
except Exception as e:
st.error(f"Error during model inference: {e}")
# import traceback
# st.error(traceback.format_exc()) # Uncomment for detailed traceback during debugging
return {"error": True, "message": f"Inference failed: {e}"}
# Main UI section
st.title("AI Text Detector")
# Load models and tokenizer
TOKENIZER = load_tokenizer(BASE_MODEL)
MODEL_1 = load_model(MODEL1_PATH, BASE_MODEL, NUM_LABELS, is_url=False, _device=DEVICE)
MODEL_2 = load_model(MODEL2_URL, BASE_MODEL, NUM_LABELS, is_url=True, _device=DEVICE)
MODEL_3 = load_model(MODEL3_URL, BASE_MODEL, NUM_LABELS, is_url=True, _device=DEVICE)
# --- Input Area ---
input_text = st.text_area(
label="Enter text to analyze:",
placeholder="Type or paste your content here...",
height=200,
key="text_input"
)
# --- Analyze Button and Output ---
analyze_button = st.button("Analyze Text", key="analyze_button")
result_placeholder = st.empty() # Create a placeholder for the result output
if analyze_button:
# Check if input_text is not None and not just whitespace AFTER stripping
if input_text and input_text.strip():
with st.spinner('Analyzing text... This might take a moment.'):
# --- Perform Classification ---
classification_result = classify_text(
input_text,
TOKENIZER,
MODEL_1,
MODEL_2,
MODEL_3,
DEVICE,
LABEL_MAPPING,
HUMAN_LABEL_INDEX
)
# --- Display Result ---
if classification_result is None:
# This case handles empty/whitespace input after cleaning
result_placeholder.warning("Please enter some text to analyze.")
elif classification_result.get("error"):
error_message = classification_result.get("message", "An unknown error occurred during analysis.")
result_placeholder.error(f"Analysis Error: {error_message}")
elif classification_result["is_human"]:
prob = classification_result['probability']
result_html = (
f"<div class='result-box'>"
f"<b>The text is</b> <span class='highlight-human'><b>{prob:.2f}%</b> likely <b>Human written</b>.</span>"
f"</div>"
)
result_placeholder.markdown(result_html, unsafe_allow_html=True)
else: # AI generated
prob = classification_result['probability']
model_name = classification_result['model']
result_html = (
f"<div class='result-box'>"
f"<b>The text is</b> <span class='highlight-ai'><b>{prob:.2f}%</b> likely <b>AI generated</b>.</span><br><br>"
f"<b>Most Likely AI Model: {model_name}</b>" # Changed wording slightly
f"</div>"
)
result_placeholder.markdown(result_html, unsafe_allow_html=True)
else: # Handles case where input_text is None or empty string before stripping
result_placeholder.warning("Please enter some text to analyze.")
# --- Footer ---
st.markdown("<div class='footer'>**Developed by Eeman Majumder**</div>", unsafe_allow_html=True) |