Spaces:
Running
Running
File size: 11,086 Bytes
98a24df e289c6c 98a24df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import streamlit as st
import torch
import torch.hub
import re
import os
import time
# --- Set Page Config First ---
st.set_page_config(
page_title="AI Text Detector",
layout="centered",
initial_sidebar_state="collapsed"
)
# --- Improved CSS for a cleaner UI ---
st.markdown("""
<style>
/* Modern clean font for the entire app */
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap');
html, body, [class*="css"] {
font-family: 'Inter', sans-serif;
}
/* Header styling */
h1 {
font-weight: 700;
color: #1E3A8A;
padding-bottom: 1rem;
border-bottom: 2px solid #E5E7EB;
margin-bottom: 2rem;
}
/* Text area styling */
.stTextArea textarea {
border: 1px solid #D1D5DB;
border-radius: 8px;
font-size: 16px;
padding: 12px;
background-color: #F9FAFB;
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05);
transition: border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out;
}
.stTextArea textarea:focus {
border-color: #3B82F6;
box-shadow: 0 0 0 3px rgba(59, 130, 246, 0.3);
outline: none;
}
/* Button styling */
.stButton button {
border-radius: 8px;
font-weight: 600;
padding: 10px 16px;
background-color: #2563EB;
color: white;
border: none;
width: 100%;
transition: background-color 0.2s ease;
}
.stButton button:hover {
background-color: #1D4ED8;
}
/* Result box styling */
.result-box {
border-radius: 8px;
padding: 20px;
margin-top: 24px;
text-align: center;
background-color: white;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1), 0 1px 2px rgba(0, 0, 0, 0.06);
border: 1px solid #E5E7EB;
}
/* Result highlights */
.highlight-human {
color: #059669;
font-weight: 600;
background: rgba(5, 150, 105, 0.1);
padding: 4px 10px;
border-radius: 8px;
display: inline-block;
}
.highlight-ai {
color: #DC2626;
font-weight: 600;
background: rgba(220, 38, 38, 0.1);
padding: 4px 10px;
border-radius: 8px;
display: inline-block;
}
/* Footer styling */
.footer {
text-align: center;
margin-top: 40px;
padding-top: 20px;
border-top: 1px solid #E5E7EB;
color: #6B7280;
font-size: 14px;
}
/* Progress bar styling */
.stProgress > div > div {
background-color: #2563EB;
}
/* General spacing */
.block-container {
padding-top: 2rem;
padding-bottom: 2rem;
}
</style>
""", unsafe_allow_html=True)
# --- Configuration ---
MODEL1_PATH = "modernbert.bin"
MODEL2_URL = "https://huggingface.co./mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12"
MODEL3_URL = "https://huggingface.co./mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed22"
BASE_MODEL = "answerdotai/ModernBERT-base"
NUM_LABELS = 41
HUMAN_LABEL_INDEX = 24
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# --- Model Loading Functions ---
@st.cache_resource(show_spinner=False)
def load_tokenizer(model_name):
from transformers import AutoTokenizer
return AutoTokenizer.from_pretrained(model_name)
@st.cache_resource(show_spinner=False)
def load_model(model_path_or_url, base_model, num_labels, is_url=False, _device=DEVICE):
from transformers import AutoModelForSequenceClassification
# Load base model architecture
model = AutoModelForSequenceClassification.from_pretrained(base_model, num_labels=num_labels)
try:
# Load weights
if is_url:
state_dict = torch.hub.load_state_dict_from_url(model_path_or_url, map_location=_device, progress=False)
else:
if not os.path.exists(model_path_or_url):
return None
state_dict = torch.load(model_path_or_url, map_location=_device, weights_only=False)
model.load_state_dict(state_dict)
model.to(_device).eval()
return model
except Exception:
return None
# --- Text Processing Functions ---
def clean_text(text):
if not isinstance(text, str):
return ""
text = text.replace("\r\n", "\n").replace("\r", "\n")
text = re.sub(r"\n\s*\n+", "\n\n", text)
text = re.sub(r"[ \t]+", " ", text)
text = re.sub(r"(\w+)-\s*\n\s*(\w+)", r"\1\2", text)
text = re.sub(r"(?<!\n)\n(?!\n)", " ", text)
return text.strip()
def classify_text(text, tokenizer, model_1, model_2, model_3, device, label_mapping, human_label_index):
if not all([model_1, model_2, model_3, tokenizer]):
return {"error": True, "message": "Models failed to load properly."}
cleaned_text = clean_text(text)
if not cleaned_text:
return None
try:
inputs = tokenizer(
cleaned_text,
return_tensors="pt",
truncation=True,
padding=True,
max_length=tokenizer.model_max_length
).to(device)
with torch.no_grad():
logits_1 = model_1(**inputs).logits
logits_2 = model_2(**inputs).logits
logits_3 = model_3(**inputs).logits
softmax_1 = torch.softmax(logits_1, dim=1)
softmax_2 = torch.softmax(logits_2, dim=1)
softmax_3 = torch.softmax(logits_3, dim=1)
averaged_probabilities = (softmax_1 + softmax_2 + softmax_3) / 3
probabilities = averaged_probabilities[0].cpu()
if not (0 <= human_label_index < len(probabilities)):
return {"error": True, "message": "Configuration error."}
human_prob = probabilities[human_label_index].item() * 100
mask = torch.ones_like(probabilities, dtype=torch.bool)
mask[human_label_index] = False
ai_total_prob = probabilities[mask].sum().item() * 100
ai_probs_only = probabilities.clone()
ai_probs_only[human_label_index] = -float('inf')
ai_argmax_index = torch.argmax(ai_probs_only).item()
ai_argmax_model = label_mapping.get(ai_argmax_index, f"Unknown AI (Index {ai_argmax_index})")
if human_prob >= ai_total_prob:
return {"is_human": True, "probability": human_prob, "model": "Human"}
else:
return {"is_human": False, "probability": ai_total_prob, "model": ai_argmax_model}
except Exception as e:
return {"error": True, "message": f"Analysis failed: {str(e)}"}
# --- Label Mapping ---
LABEL_MAPPING = {
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b',
11: 'flan_t5_base', 12: 'flan_t5_large', 13: 'flan_t5_small',
14: 'flan_t5_xl', 15: 'flan_t5_xxl', 16: 'gemma-7b-it', 17: 'gemma2-9b-it',
18: 'gpt-3.5-turbo', 19: 'gpt-35', 20: 'gpt4', 21: 'gpt4o',
22: 'gpt_j', 23: 'gpt_neox', 24: 'human', 25: 'llama3-70b', 26: 'llama3-8b',
27: 'mixtral-8x7b', 28: 'opt_1.3b', 29: 'opt_125m', 30: 'opt_13b',
31: 'opt_2.7b', 32: 'opt_30b', 33: 'opt_350m', 34: 'opt_6.7b',
35: 'opt_iml_30b', 36: 'opt_iml_max_1.3b', 37: 't0_11b', 38: 't0_3b',
39: 'text-davinci-002', 40: 'text-davinci-003'
}
# --- Main UI ---
st.title("AI Text Detector")
# Initialization with a progress bar
with st.spinner(""):
# Create a progress bar
progress_bar = st.progress(0)
st.info("Initializing AI detection models...")
# Step 1: Load tokenizer
progress_bar.progress(20)
time.sleep(0.5) # Small delay for visual feedback
TOKENIZER = load_tokenizer(BASE_MODEL)
# Step 2: Load first model
progress_bar.progress(40)
time.sleep(0.5) # Small delay for visual feedback
MODEL_1 = load_model(MODEL1_PATH, BASE_MODEL, NUM_LABELS, is_url=False, _device=DEVICE)
# Step 3: Load second model
progress_bar.progress(60)
time.sleep(0.5) # Small delay for visual feedback
MODEL_2 = load_model(MODEL2_URL, BASE_MODEL, NUM_LABELS, is_url=True, _device=DEVICE)
# Step 4: Load third model
progress_bar.progress(80)
time.sleep(0.5) # Small delay for visual feedback
MODEL_3 = load_model(MODEL3_URL, BASE_MODEL, NUM_LABELS, is_url=True, _device=DEVICE)
# Complete initialization
progress_bar.progress(100)
time.sleep(0.5) # Small delay for visual feedback
# Clear the initialization messages
st.empty()
# Check if models loaded successfully
if not all([TOKENIZER, MODEL_1, MODEL_2, MODEL_3]):
st.error("Failed to initialize one or more AI detection models. Please try refreshing the page.")
st.stop()
# Input area
input_text = st.text_area(
label="Enter text to analyze:",
placeholder="Type or paste your content here for AI detection analysis...",
height=200,
key="text_input"
)
# Analyze button and output
analyze_button = st.button("Analyze Text", key="analyze_button")
result_placeholder = st.empty()
if analyze_button:
if input_text and input_text.strip():
with st.spinner('Analyzing text...'):
classification_result = classify_text(
input_text,
TOKENIZER,
MODEL_1,
MODEL_2,
MODEL_3,
DEVICE,
LABEL_MAPPING,
HUMAN_LABEL_INDEX
)
# Display result
if classification_result is None:
result_placeholder.warning("Please enter some text to analyze.")
elif classification_result.get("error"):
error_message = classification_result.get("message", "An unknown error occurred during analysis.")
result_placeholder.error(f"Analysis Error: {error_message}")
elif classification_result["is_human"]:
prob = classification_result['probability']
result_html = (
f"<div class='result-box'>"
f"<b>The text is</b> <span class='highlight-human'><b>{prob:.2f}%</b> likely <b>Human written</b>.</span>"
f"</div>"
)
result_placeholder.markdown(result_html, unsafe_allow_html=True)
else: # AI generated
prob = classification_result['probability']
model_name = classification_result['model']
result_html = (
f"<div class='result-box'>"
f"<b>The text is</b> <span class='highlight-ai'><b>{prob:.2f}%</b> likely <b>AI generated</b>.</span><br><br>"
f"<b>Most Likely AI Model: {model_name}</b>"
f"</div>"
)
result_placeholder.markdown(result_html, unsafe_allow_html=True)
else:
result_placeholder.warning("Please enter some text to analyze.")
# Footer
st.markdown("<div class='footer'>Developed by Eeman Majumder</div>", unsafe_allow_html=True) |