File size: 10,308 Bytes
7ef4406
2f4845d
7871a55
32f7bd0
2f4845d
7ef4406
 
 
c35a92d
7ef4406
661355f
08c8080
 
7ef4406
c3c5505
 
 
2f4845d
7ef4406
 
661355f
 
 
 
2f4845d
7910ed2
08c8080
 
5fb305a
 
 
 
 
 
08c8080
 
5fb305a
 
 
08c8080
 
0406d98
08c8080
 
 
 
 
 
 
 
 
0406d98
08c8080
 
5fb305a
08c8080
 
 
 
0406d98
b5be006
 
 
5fb305a
b5be006
 
 
 
 
e95330e
 
08c8080
0406d98
08c8080
 
 
 
c3c5505
08c8080
 
c3c5505
08c8080
7ef4406
7910ed2
7871a55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c299d0e
7871a55
 
 
 
 
e95330e
7871a55
 
 
 
 
c299d0e
e95330e
7871a55
 
 
 
 
 
 
32f7bd0
e95330e
32f7bd0
b5be006
 
 
 
c299d0e
32f7bd0
c299d0e
5da5a3e
 
7871a55
 
 
 
 
 
b5be006
 
 
 
 
7871a55
c299d0e
b5be006
7871a55
7910ed2
e1eb457
 
c299d0e
aa5b4bf
30154de
 
e95330e
30154de
 
 
 
 
 
 
 
 
 
 
 
bed8647
 
 
 
 
 
 
 
30154de
 
 
 
793879d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fb305a
793879d
 
 
 
 
 
 
30154de
e95330e
30154de
e95330e
 
 
 
 
 
 
 
 
30154de
 
 
bed8647
30154de
 
 
 
793879d
 
 
 
 
30154de
 
 
 
bed8647
30154de
2e7fe93
f53f431
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import gradio as gr
import matplotlib.pyplot as plt
import pandas as np
import tempfile
from datetime import datetime
from langchain_core.messages import HumanMessage
from tools import tools
from agents import *
from config import *
from workflow import create_workflow
import logging
import threading
import queue

# Global timeout variable
TIMEOUT_SECONDS = 300

# Initialize workflow
graph = create_workflow()

# Configure logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Helper Functions
def run_graph(input_message, history, user_details):
    def invoke_workflow(q):
        try:
            # Determine if the query is general or personal
            if "how" in input_message.lower() or "what" in input_message.lower():
                general_query = True if "general" in input_message.lower() else False
            else:
                general_query = False

            system_prompt = (
                "You are a fitness and health assistant. "
                "If the user's query is personal, provide tailored advice based on their details, including BMI and caloric needs. "
                "If the query is general, respond broadly without relying on personal metrics. "
                "Encourage the user to ask follow-up questions and maintain a conversational tone."
            )

            # Summarize user details
            user_details_summary = (
                f"Name: {user_details.get('name', 'Unknown')}, "
                f"Age: {user_details.get('age', 'Unknown')}, "
                f"Gender: {user_details.get('gender', 'Unknown')}, "
                f"Weight: {user_details.get('weight', 'Unknown')} kg, "
                f"Height: {user_details.get('height', 'Unknown')} cm, "
                f"Activity Level: {user_details.get('activity_level', 'Unknown')}"
            )

            # Messages for the workflow
            messages = [
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": f"User details: {user_details_summary}" if not general_query else "General query"},
                {"role": "user", "content": input_message}
            ]

            response = graph.invoke({"messages": messages})

            # Extract LLM response
            llm_response = None
            for msg in response.get("messages", []):
                if isinstance(msg, HumanMessage) and msg.name in ["nutritionist", "workout_coach", "general_expert"]:
                    llm_response = msg.content
                    break

            if llm_response:
                q.put(llm_response)
            else:
                q.put("The workflow did not return a valid response. Please try again.")
        except Exception as e:
            q.put(f"An error occurred: {e}")

    q = queue.Queue()
    thread = threading.Thread(target=invoke_workflow, args=(q,))
    thread.start()
    thread.join(timeout=TIMEOUT_SECONDS)

    if thread.is_alive():
        return f"The request took longer than {TIMEOUT_SECONDS} seconds and timed out. Please try again."
    return q.get()


def calculate_bmi(height, weight):
    height_m = height / 100
    bmi = weight / (height_m ** 2)
    if bmi < 18.5:
        status = "underweight"
    elif 18.5 <= bmi < 24.9:
        status = "normal weight"
    elif 25 <= bmi < 29.9:
        status = "overweight"
    else:
        status = "obese"
    return bmi, status


def visualize_bmi_and_calories(bmi, calories):
    categories = ["Underweight", "Normal Weight", "Overweight", "Obese"]
    bmi_values = [18.5, 24.9, 29.9, 40]
    calorie_range = [1500, 2000, 2500, 3000]

    fig, ax1 = plt.subplots(figsize=(10, 6))

    # BMI Visualization
    ax1.bar(categories, bmi_values, color=['blue', 'green', 'orange', 'red'], alpha=0.6, label="BMI Ranges")
    ax1.axhline(y=bmi, color='purple', linestyle='--', linewidth=2, label=f"Your BMI: {bmi:.2f}")
    ax1.set_ylabel("BMI Value")
    ax1.set_title("BMI and Caloric Needs Visualization")
    ax1.legend(loc="upper left")

    # Calorie Visualization
    ax2 = ax1.twinx()
    ax2.plot(categories, calorie_range, 'o-', color='magenta', label="Calorie Ranges")
    ax2.axhline(y=calories, color='cyan', linestyle='--', linewidth=2, label=f"Your Calorie Needs: {calories:.2f} kcal")
    ax2.set_ylabel("Calories")
    ax2.legend(loc="upper right")

    plt.tight_layout()

    # Save visualization to a temporary file
    temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
    try:
        plt.savefig(temp_file.name)
    finally:
        plt.close()

    return temp_file.name


def calculate_calories(age, weight, height, activity_level, gender):
    if gender.lower() == "male":
        bmr = 10 * weight + 6.25 * height - 5 * age + 5
    else:
        bmr = 10 * weight + 6.25 * height - 5 * age - 161

    activity_multipliers = {
        "sedentary": 1.2,
        "lightly active": 1.375,
        "moderately active": 1.55,
        "very active": 1.725,
        "extra active": 1.9,
    }

    activity_level = activity_level.lower()
    return bmr * activity_multipliers.get(activity_level, 1.2)

# Interface Components
with gr.Blocks() as demo:
    gr.Markdown("<strong>FIT.AI - Your Fitness and Wellbeing Coach</strong>")

    with gr.Tabs():
        with gr.Tab("Visualization + Chat"):
            # User Input
            with gr.Row():
                user_name = gr.Textbox(placeholder="Enter your name", label="Name")
                user_age = gr.Number(label="Age (years)", value=25, precision=0)
                user_gender = gr.Dropdown(choices=["Male", "Female"], label="Gender", value="Male")
                user_weight = gr.Number(label="Weight (kg)", value=70, precision=1)
                user_height = gr.Number(label="Height (cm)", value=170, precision=1)
                activity_level = gr.Dropdown(
                    choices=["Sedentary", "Lightly active", "Moderately active", "Very active", "Extra active"],
                    label="Activity Level",
                    value="Moderately active"
                )

            # Visualization Output
            bmi_chart = gr.Image(label="BMI and Calorie Chart")

            # Chat Outputs
            with gr.Row():
                chatbot = gr.Chatbot(label="Chat with FIT.AI")
                text_input = gr.Textbox(placeholder="Type your question here...", label="Your Question")

            submit_button = gr.Button("Submit")
            clear_button = gr.Button("Clear Chat")

            def submit_message(message, history=[]):
                user_details = {
                    "name": user_name.value,
                    "age": user_age.value,
                    "weight": user_weight.value,
                    "height": user_height.value,
                    "activity_level": activity_level.value,
                    "gender": user_gender.value
                }

                bmi, status = calculate_bmi(user_details['height'], user_details['weight'])
                calories = calculate_calories(
                    user_details['age'], user_details['weight'], user_details['height'], user_details['activity_level'], user_details['gender']
                )
                chart_path = visualize_bmi_and_calories(bmi, calories)

                user_prompt = (
                    f"User wants advice on: {message}\n"
                    f"User Details:\n"
                    f"- Name: {user_details['name']}\n"
                    f"- Age: {user_details['age']}\n"
                    f"- Gender: {user_details['gender']}\n"
                    f"- Weight: {user_details['weight']} kg\n"
                    f"- Height: {user_details['height']} cm\n"
                    f"- Activity Level: {user_details['activity_level']}\n"
                    f"- BMI: {bmi:.2f} ({status})\n"
                    f"- Daily Caloric Needs: {calories:.2f} kcal\n"
                    f"\nProvide tailored advice based on these metrics."
                )

                response = run_graph(user_prompt, history, user_details)

                history.append(("User", message))
                if isinstance(response, str):
                    history.append(("FIT.AI", response + "\nLet me know if there's anything else you'd like to ask! 😊"))
                else:
                    history.append(("FIT.AI", "An unexpected response was received."))

                return history, chart_path

            submit_button.click(submit_message, inputs=[text_input, chatbot], outputs=[chatbot, bmi_chart])
            clear_button.click(lambda: ([], ""), inputs=None, outputs=[chatbot, bmi_chart])

        # Calculator + Visualization Tab
        with gr.Tab("Calculator + Visualization"):
            user_age_calc = gr.Number(label="Age (years)", value=25, precision=0)
            user_gender_calc = gr.Dropdown(choices=["Male", "Female"], label="Gender", value="Male")
            user_weight_calc = gr.Number(label="Weight (kg)", value=70, precision=1)
            user_height_calc = gr.Number(label="Height (cm)", value=170, precision=1)
            activity_level_calc = gr.Dropdown(
                choices=["Sedentary", "Lightly active", "Moderately active", "Very active", "Extra active"],
                label="Activity Level",
                value="Moderately active"
            )

            bmi_output = gr.Label(label="BMI Result")
            calorie_output = gr.Label(label="Calorie Needs")
            bmi_chart_calc = gr.Image(label="BMI and Calorie Chart")

            calculate_button = gr.Button("Calculate")

            def calculate_metrics(age, weight, height, gender, activity_level):
                bmi, status = calculate_bmi(height, weight)
                calories = calculate_calories(age, weight, height, activity_level, gender)
                chart_path = visualize_bmi_and_calories(bmi, calories)

                return f"Your BMI is {bmi:.2f}, considered {status}.", f"Daily calorie needs: {calories:.2f} kcal", chart_path

            calculate_button.click(
                calculate_metrics,
                inputs=[user_age_calc, user_weight_calc, user_height_calc, user_gender_calc, activity_level_calc],
                outputs=[bmi_output, calorie_output, bmi_chart_calc]
            )

demo.launch(share=True)