Spaces:
Build error
Build error
File size: 12,330 Bytes
eb06b06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import os
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.schema import Document
import requests
from bs4 import BeautifulSoup
from scrapegraphai.graphs import SmartScraperGraph
import asyncio
from functools import partial
import sys
from crawl4ai import AsyncWebCrawler, CacheMode, CrawlerRunConfig
from langchain_community.document_loaders import TextLoader
import chromadb
from chromadb.config import Settings
import os
chroma_setting = Settings(anonymized_telemetry=False)
persist_directory = "chroma_db"
collection_metadata = {"hnsw:space": "cosine"}
client = chromadb.PersistentClient(path=persist_directory, settings=chroma_setting)
# Set Windows event loop policy
if sys.platform == "win32":
asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
# Apply nest_asyncio to allow nested event loops
import nest_asyncio # Import nest_asyncio module for asynchronous operations
nest_asyncio.apply() # Apply nest_asyncio to resolve any issues with asyncio event loop
# Load environment variables
load_dotenv()
print(os.getenv("GROQ_API_KEY"))
class WebRAG:
def __init__(self):
# Initialize Groq
self.llm = ChatGroq(
api_key=os.getenv("GROQ_API_KEY"),
model_name="mixtral-8x7b-32768"
)
self.response_llm = ChatGroq(
api_key=os.getenv("GROQ_API_KEY"),
model_name="DeepSeek-R1-Distill-Llama-70B",
temperature=0.6,
max_tokens=2048,
)
# Initialize embeddings
model_kwargs = {"device": "cpu"}
encode_kwargs = {"normalize_embeddings": True}
self.embeddings = HuggingFaceBgeEmbeddings(
model_name="BAAI/bge-base-en-v1.5",
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
# Initialize text splitter
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
self.vector_store = Chroma(embedding_function= self.embeddings,
client = client,
persist_directory=persist_directory,
client_settings=chroma_setting,
)
# self.qa_chain = None
def crawl_webpage_bs4(self, url):
"""Crawl webpage using BeautifulSoup"""
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url, headers=headers)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
# Get text content from relevant tags
text_elements = soup.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'li', 'div'])
content = ' '.join([elem.get_text(strip=True) for elem in text_elements])
# Clean up whitespace
content = ' '.join(content.split())
return content
# Crawl4ai
async def crawl_webpage_crawl4ai_async(self, url):
"""Crawl webpage using Crawl4ai asynchronously"""
try:
crawler_run_config = CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(url=url, config=crawler_run_config)
return result.markdown
except Exception as e:
raise Exception(f"Error in Crawl4ai async: {str(e)}")
def crawl_webpage_crawl4ai(self, url):
"""Synchronous wrapper for crawl4ai"""
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
return loop.run_until_complete(self.crawl_webpage_crawl4ai_async(url))
except Exception as e:
raise Exception(f"Error in Crawl4ai: {str(e)}")
def crawl_webpage_scrapegraph(self, url):
"""Crawl webpage using ScrapeGraphAI"""
try:
# First try with Groq
graph_config = {
"llm": {
"api_key": os.getenv("GROQ_API_KEY"),
"model": "groq/mixtral-8x7b-32768",
},
"verbose": True,
"headless": True,
"disable_async": True # Use synchronous mode
}
scraper = SmartScraperGraph(
prompt="Extract all the useful textual content from the webpage",
source=url,
config=graph_config
)
# Use synchronous run
result = scraper.run()
print("Groq scraping successful")
return str(result)
except Exception as e:
print(f"Groq scraping failed, falling back to Ollama: {str(e)}")
try:
# Fallback to Ollama
graph_config = {
"llm": {
"model": "ollama/deepseek-r1:8b",
"temperature": 0,
"max_tokens": 2048,
"format": "json",
"base_url": "http://localhost:11434",
},
"embeddings": {
"model": "ollama/nomic-embed-text",
"base_url": "http://localhost:11434",
},
"verbose": True,
"disable_async": True # Use synchronous mode
}
scraper = SmartScraperGraph(
prompt="Extract all the useful textual content from the webpage",
source=url,
config=graph_config
)
result = scraper.run()
print("Ollama scraping successful")
return str(result)
except Exception as e2:
raise Exception(f"Both Groq and Ollama scraping failed: {str(e2)}")
def crawl_and_process(self, url, scraping_method="beautifulsoup"):
"""Crawl the URL and process the content"""
try:
# Validate URL
if not url.startswith(('http://', 'https://')):
raise ValueError("Invalid URL. Please include http:// or https://")
# Crawl the website using selected method
if scraping_method == "beautifulsoup":
content = self.crawl_webpage_bs4(url)
elif scraping_method == "crawl4ai":
content = self.crawl_webpage_crawl4ai(url)
else: # scrapegraph
content = self.crawl_webpage_scrapegraph(url)
if not content:
raise ValueError("No content found at the specified URL")
# Clean the content of any problematic characters
content = content.encode('utf-8', errors='ignore').decode('utf-8')
# Create a temporary file with proper encoding
import tempfile
with tempfile.NamedTemporaryFile(mode='w', encoding='utf-8', delete=False, suffix='.txt') as temp_file:
temp_file.write(content)
temp_path = temp_file.name
try:
# Load and process the document
docs = TextLoader(temp_path, encoding='utf-8').load()
docs = [Document(page_content=doc.page_content, metadata={"source": url}) for doc in docs]
chunks = self.text_splitter.split_documents(docs)
print(f"Length of chunks: {len(chunks)}")
print(f"First chunk: {chunks[0].metadata['source']}")
# Check if path exists
data_exists = False
existing_urls = []
if os.path.exists("chroma_db"):
# Check if the URL is already in the metadata
print(f"Checking if URL {url} is already in the metadata")
try:
self.vectorstore = Chroma(
embedding_function=self.embeddings,
client=client,
persist_directory=persist_directory
)
entities = self.vector_store.get(include=["metadatas"])
print(f"Entities: {len(entities['metadatas'])}")
if len(entities['metadatas']) > 0:
for entry in entities['metadatas']:
#print(f"Entry: {entry}")
existing_urls.append(entry["source"])
except Exception as e:
print(f"Error checking existing URLs: {str(e)}")
print(f"Existing URLs: {set(existing_urls)}")
if url in set(existing_urls):
data_exists = True
print(f"URL {url} already exists in the vector store")
# Load the existing vector store
else:
# Add new documents to the vector store
MAX_BATCH_SIZE = 100
for i in range(0,len(chunks),MAX_BATCH_SIZE):
#print(f"start of processing: {i}")
i_end = min(len(chunks),i+MAX_BATCH_SIZE)
#print(f"end of processing: {i_end}")
batch = chunks[i:i_end]
#
self.vectorstore.add_documents(batch)
print(f"vectors for batch {i} to {i_end} stored successfully...")
# Create QA chain
self.qa_chain = ConversationalRetrievalChain.from_llm(
llm=self.response_llm,
retriever=self.vector_store.as_retriever(search_type="similarity",
search_kwargs={"k": 5,"filter":{"source": url}}),
return_source_documents=True
)
finally:
# Clean up the temporary file
try:
os.unlink(temp_path)
except:
pass
except Exception as e:
raise Exception(f"Error processing URL: {str(e)}")
def ask_question(self, question, chat_history=[]):
"""Ask a question about the processed content"""
try:
if not self.qa_chain:
raise ValueError("Please crawl and process a URL first")
response = self.qa_chain.invoke({"question": question, "chat_history": chat_history[:4000]})
print(f"Response: {response}")
final_answer = response["answer"].split("</think>\n\n")[-1]
return final_answer
except Exception as e:
raise Exception(f"Error generating response: {str(e)}")
def main():
# Initialize the RAG system
rag = WebRAG()
# Get URL from user
url = input("Enter the URL to process: ")
print("Processing URL... This may take a moment.")
scraping_method = input("Choose scraping method (beautifulsoup or scrapegraph or crawl4ai): ")
rag.crawl_and_process(url, scraping_method)
# Interactive Q&A loop
chat_history = []
while True:
question = input("\nEnter your question (or 'quit' to exit): ")
if question.lower() == 'quit':
break
answer = rag.ask_question(question, chat_history)
print("\nAnswer:", answer)
chat_history.append((question, answer))
if __name__ == "__main__":
main() |