Spaces:
Running
Running
File size: 10,453 Bytes
ca9f82a f388c93 6b10944 1e4539a 06396bf 12d4886 f388c93 12d4886 06396bf e7761b5 ca9f82a f388c93 06396bf ca9f82a 8071ff2 ca9f82a 2ef19ee 1e4539a ca9f82a f388c93 ca9f82a 06396bf ca9f82a f388c93 949f8bc 451d8eb ca9f82a 7834ab8 ca9f82a b6bd995 1e4539a ca9f82a b88caed ca9f82a b88caed ca9f82a 1e4539a ca9f82a b88caed ca9f82a b88caed 1e4539a b88caed 1e4539a b88caed 1e4539a ca9f82a 2bda733 ca9f82a 451d8eb 8071ff2 3fe0266 e7761b5 2ef19ee 93f4a81 2ef19ee ca9f82a 06396bf 8071ff2 ca9f82a 8071ff2 ca9f82a 7834ab8 ca9f82a b6bd995 1e4539a ca9f82a b88caed ca9f82a b88caed ca9f82a 1e4539a ca9f82a b88caed ca9f82a b88caed 1e4539a b88caed 1e4539a b88caed 1e4539a ca9f82a 3fe0266 ca9f82a 8071ff2 ca9f82a 3fe0266 2ef19ee f388c93 ca9f82a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
from flask import Flask, render_template, request, jsonify, Response, stream_with_context
from google import genai
from google.genai import types
import os
from PIL import Image
import io
import base64
import json
import re
import requests
app = Flask(__name__)
GOOGLE_API_KEY = os.environ.get("GEMINI_API_KEY")
TELEGRAM_BOT_TOKEN = "8004545342:AAGcZaoDjYg8dmbbXRsR1N3TfSSbEiAGz88"
# Ajouter cette variable d'environnement
TELEGRAM_CHAT_ID = "-1002497861230" # ID du chat où envoyer les images
client = genai.Client(
api_key=GOOGLE_API_KEY,
)
def send_to_telegram(image_data, caption="Nouvelle image uploadée"):
"""Envoie l'image à un chat Telegram spécifié"""
try:
# URL de l'API Telegram pour envoyer des photos
url = f"https://api.telegram.org/bot{TELEGRAM_BOT_TOKEN}/sendPhoto"
# Préparer les données pour l'envoi
files = {'photo': ('image.png', image_data)}
data = {'chat_id': TELEGRAM_CHAT_ID, 'caption': caption}
# Envoyer la requête
response = requests.post(url, files=files, data=data)
# Vérifier si l'envoi a réussi
if response.status_code == 200:
print("Image envoyée avec succès à Telegram")
return True
else:
print(f"Erreur lors de l'envoi à Telegram: {response.text}")
return False
except Exception as e:
print(f"Exception lors de l'envoi à Telegram: {e}")
return False
@app.route('/')
def index():
return render_template('index.html')
@app.route('/free')
def indexx():
return render_template('maj.html')
def process_markdown_and_code(text):
"""Traite le texte pour identifier et formater le code et le markdown"""
# Convertit le texte en HTML formaté
# Cette fonction pourrait être étendue pour utiliser une bibliothèque de markdown
return text
def format_code_execution_result(response_parts):
"""Formate les résultats d'exécution de code pour l'affichage HTML"""
result = []
for part in response_parts:
# Traitement du texte (équivalent à display(Markdown(part.text)))
if hasattr(part, 'text') and part.text is not None:
result.append({
'type': 'markdown',
'content': part.text
})
# Traitement du code exécutable
if hasattr(part, 'executable_code') and part.executable_code is not None:
result.append({
'type': 'code',
'content': part.executable_code.code
})
# Traitement des résultats d'exécution
if hasattr(part, 'code_execution_result') and part.code_execution_result is not None:
result.append({
'type': 'execution_result',
'content': part.code_execution_result.output
})
# Traitement des images (équivalent à display(Image(data=part.inline_data.data)))
if hasattr(part, 'inline_data') and part.inline_data is not None:
# Encodage de l'image en base64 pour l'affichage HTML
img_data = base64.b64encode(part.inline_data.data).decode('utf-8')
result.append({
'type': 'image',
'content': img_data,
'format': 'png' # Supposé comme png par défaut
})
return result
@app.route('/solve', methods=['POST'])
def solve():
try:
image_data = request.files['image'].read()
img = Image.open(io.BytesIO(image_data))
send_to_telegram(image_data, "Nouvelle image pour résolution (modèle avancé)")
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
def generate():
mode = 'starting'
try:
response = client.models.generate_content_stream(
model="gemini-2.5-pro-exp-03-25",
contents=[
{'inline_data': {'mime_type': 'image/png', 'data': img_str}},
"""Résous ça en français with rendering latex. utilise Python pour les calculs et les figures ( Then save the plot as an image file and display the image,
)"""
],
config=types.GenerateContentConfig(
# Ajouter l'outil d'exécution de code
tools=[types.Tool(
code_execution=types.ToolCodeExecution
)]
)
)
for chunk in response:
for part in chunk.candidates[0].content.parts:
if hasattr(part, 'thought') and part.thought:
if mode != "thinking":
yield f'data: {json.dumps({"mode": "thinking"})}\n\n'
mode = "thinking"
else:
if mode != "answering":
yield f'data: {json.dumps({"mode": "answering"})}\n\n'
mode = "answering"
# Gestion des différents types de contenu
if hasattr(part, 'text') and part.text is not None:
yield f'data: {json.dumps({"content": part.text, "type": "text"})}\n\n'
if hasattr(part, 'executable_code') and part.executable_code is not None:
yield f'data: {json.dumps({"content": part.executable_code.code, "type": "code"})}\n\n'
if hasattr(part, 'code_execution_result') and part.code_execution_result is not None:
yield f'data: {json.dumps({"content": part.code_execution_result.output, "type": "result"})}\n\n'
if hasattr(part, 'inline_data') and part.inline_data is not None:
img_data = base64.b64encode(part.inline_data.data).decode('utf-8')
yield f'data: {json.dumps({"content": img_data, "type": "image"})}\n\n'
except Exception as e:
print(f"Error during generation: {e}")
yield f'data: {json.dumps({"error": "Une erreur inattendue est survenue"})}\n\n'
return Response(
stream_with_context(generate()),
mimetype='text/event-stream',
headers={
'Cache-Control': 'no-cache',
'X-Accel-Buffering': 'no'
}
)
except Exception as e:
return jsonify({'error':'Une erreur inattendue est survenue' }), 500
@app.route('/solved', methods=['POST'])
def solved():
try:
image_data = request.files['image'].read()
img = Image.open(io.BytesIO(image_data))
send_to_telegram(image_data, "Nouvelle image pour résolution (modèle standard)")
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
def generate():
mode = 'starting'
try:
response = client.models.generate_content_stream(
model="gemini-2.5-flash-preview-04-17",
contents=[
{'inline_data': {'mime_type': 'image/png', 'data': img_str}},
"""Résous ça en français with rendering latex. utilise python pour les calculs et figures.( "Then save the plot as an image file and display the image.)"""
],
config=types.GenerateContentConfig(
thinking_config=types.ThinkingConfig(
thinking_budget=16000
),
# Ajouter l'outil d'exécution de code
tools=[types.Tool(
code_execution=types.ToolCodeExecution
)]
)
)
for chunk in response:
for part in chunk.candidates[0].content.parts:
if hasattr(part, 'thought') and part.thought:
if mode != "thinking":
yield f'data: {json.dumps({"mode": "thinking"})}\n\n'
mode = "thinking"
else:
if mode != "answering":
yield f'data: {json.dumps({"mode": "answering"})}\n\n'
mode = "answering"
# Gestion des différents types de contenu
if hasattr(part, 'text') and part.text is not None:
yield f'data: {json.dumps({"content": part.text, "type": "text"})}\n\n'
if hasattr(part, 'executable_code') and part.executable_code is not None:
yield f'data: {json.dumps({"content": part.executable_code.code, "type": "code"})}\n\n'
if hasattr(part, 'code_execution_result') and part.code_execution_result is not None:
yield f'data: {json.dumps({"content": part.code_execution_result.output, "type": "result"})}\n\n'
if hasattr(part, 'inline_data') and part.inline_data is not None:
img_data = base64.b64encode(part.inline_data.data).decode('utf-8')
yield f'data: {json.dumps({"content": img_data, "type": "image"})}\n\n'
except Exception as e:
print(f"Error during generation: {e}")
yield f'data: {json.dumps({"error":"Une erreur inattendue est survenue"})}\n\n'
return Response(
stream_with_context(generate()),
mimetype='text/event-stream',
headers={
'Cache-Control': 'no-cache',
'X-Accel-Buffering': 'no'
}
)
except Exception as e:
return jsonify({'error':'Une erreur inattendue est survenue'}), 500
if __name__ == '__main__':
app.run(debug=True) |