from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-large-v1.0") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-large-v1.0") pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "One day I will see the world!" labels = ["travel", "dreams", "sport", "science", "politics"] results = pipeline(text, labels, threshold=0.5)[0] #because we have one text for result in results: print(result["label"], "=>", result["score"])