Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,173 +1,132 @@
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
-
from transformers import pipeline
|
4 |
-
from langdetect import detect
|
5 |
import pandas as pd
|
6 |
import textstat
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
import os
|
|
|
9 |
|
|
|
10 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
11 |
|
12 |
-
|
13 |
-
# Fonction pour appeler l'API Mistral-7B
|
14 |
def call_zephyr_api(prompt, hf_token=HF_TOKEN):
|
15 |
API_URL = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta"
|
16 |
headers = {"Authorization": f"Bearer {hf_token}"}
|
17 |
payload = {"inputs": prompt, "parameters": {"max_new_tokens": 300}}
|
18 |
-
|
19 |
try:
|
20 |
response = requests.post(API_URL, headers=headers, json=payload, timeout=60)
|
21 |
response.raise_for_status()
|
22 |
-
return response.json()[0]["generated_text"]
|
23 |
except Exception as e:
|
24 |
-
raise gr.Error(f"
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
26 |
|
|
|
|
|
|
|
27 |
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
classifier = pipeline("sentiment-analysis", model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis")
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
# Fonction pour suggérer le meilleur modèle
|
37 |
-
def suggest_model(text):
|
38 |
-
word_count = len(text.split())
|
39 |
-
if word_count < 50:
|
40 |
-
return "Rapide"
|
41 |
-
elif word_count <= 200:
|
42 |
-
return "Équilibré"
|
43 |
-
else:
|
44 |
-
return "Précis"
|
45 |
-
|
46 |
-
# Fonction pour générer un graphique de clarté
|
47 |
-
def plot_clarity(clarity_scores):
|
48 |
-
plt.figure(figsize=(8, 4))
|
49 |
-
plt.plot(range(1, len(clarity_scores) + 1), clarity_scores, marker='o')
|
50 |
-
plt.title("Évolution du Score de Clarté")
|
51 |
-
plt.xlabel("Numéro d'analyse")
|
52 |
-
plt.ylabel("Score de Clarté")
|
53 |
-
plt.ylim(0, 100)
|
54 |
-
plt.grid(True)
|
55 |
-
return plt.gcf()
|
56 |
-
|
57 |
-
# Fonction pour reset le graphique
|
58 |
-
def reset_clarity_graph():
|
59 |
-
return [], plot_clarity([])
|
60 |
-
|
61 |
-
# Fonction d'analyse
|
62 |
-
def full_analysis(text, mode, detail_mode, count, history, clarity_scores):
|
63 |
-
if not text:
|
64 |
-
return "Entrez une phrase.", "", "", 0, history, clarity_scores, None, None
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
except:
|
69 |
-
lang = "unknown"
|
70 |
|
71 |
-
|
72 |
-
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
|
77 |
-
|
78 |
-
You are a financial analyst AI.
|
79 |
-
Based on the following financial news: \"{text}\",
|
80 |
-
explain clearly why the sentiment is {result['label'].lower()}.
|
81 |
-
{"Write a concise paragraph." if detail_mode == "Normal" else "Write a detailed explanation over multiple paragraphs."}
|
82 |
-
"""
|
83 |
|
84 |
-
|
85 |
-
|
|
|
|
|
86 |
|
87 |
-
|
88 |
-
|
|
|
89 |
|
90 |
-
|
91 |
history.append({
|
92 |
"Texte": text,
|
93 |
-
"Sentiment":
|
94 |
-
"
|
95 |
-
"
|
96 |
-
"Explication_FR": explanation_fr,
|
97 |
-
"Clarté": f"{clarity_score:.1f}"
|
98 |
})
|
99 |
|
100 |
-
return
|
101 |
-
|
102 |
-
# Fonction pour
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
def download_history(history):
|
104 |
if not history:
|
105 |
return None
|
106 |
df = pd.DataFrame(history)
|
107 |
-
file_path = "/tmp/
|
108 |
df.to_csv(file_path, index=False)
|
109 |
return file_path
|
110 |
|
111 |
-
# Interface
|
112 |
def launch_app():
|
113 |
-
with gr.Blocks(
|
114 |
-
|
115 |
-
gr.Markdown("# 📈 Analyse Financière Premium + Explication IA", elem_id="title")
|
116 |
-
gr.Markdown("Entrez une actualité financière. L'IA analyse et explique en anglais/français. Choisissez votre mode d'explication.")
|
117 |
-
|
118 |
-
count = gr.State(0)
|
119 |
-
history = gr.State([])
|
120 |
-
clarity_scores = gr.State([])
|
121 |
|
122 |
with gr.Row():
|
123 |
-
input_text = gr.Textbox(
|
124 |
|
125 |
with gr.Row():
|
126 |
-
|
127 |
-
|
128 |
-
value="Équilibré",
|
129 |
-
label="Mode recommandé selon la taille"
|
130 |
-
)
|
131 |
-
detail_mode_selector = gr.Dropdown(
|
132 |
-
choices=["Normal", "Expert"],
|
133 |
-
value="Normal",
|
134 |
-
label="Niveau de détail"
|
135 |
-
)
|
136 |
-
|
137 |
-
analyze_btn = gr.Button("Analyser")
|
138 |
-
reset_graph_btn = gr.Button("Reset Graphique")
|
139 |
-
download_btn = gr.Button("Télécharger CSV")
|
140 |
|
141 |
with gr.Row():
|
142 |
-
sentiment_output = gr.Textbox(label="
|
|
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
with gr.Column():
|
148 |
-
explanation_output_fr = gr.Textbox(label="Explication en Français")
|
149 |
|
150 |
-
|
151 |
-
clarity_plot = gr.Plot(label="Graphique des Scores de Clarté")
|
152 |
-
download_file = gr.File(label="Fichier CSV")
|
153 |
-
|
154 |
-
input_text.change(lambda t: gr.update(value=suggest_model(t)), inputs=[input_text], outputs=[mode_selector])
|
155 |
|
156 |
analyze_btn.click(
|
157 |
full_analysis,
|
158 |
-
inputs=[input_text,
|
159 |
-
outputs=[sentiment_output,
|
160 |
-
)
|
161 |
-
|
162 |
-
reset_graph_btn.click(
|
163 |
-
reset_clarity_graph,
|
164 |
-
outputs=[clarity_scores, clarity_plot]
|
165 |
)
|
166 |
|
167 |
download_btn.click(
|
168 |
download_history,
|
169 |
inputs=[history],
|
170 |
-
outputs=[
|
171 |
)
|
172 |
|
173 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
|
|
|
|
3 |
import pandas as pd
|
4 |
import textstat
|
|
|
5 |
import os
|
6 |
+
from transformers import pipeline
|
7 |
|
8 |
+
# Récupération du token Hugging Face
|
9 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
10 |
|
11 |
+
# Fonction pour appeler l'API Zephyr-7B-Beta
|
|
|
12 |
def call_zephyr_api(prompt, hf_token=HF_TOKEN):
|
13 |
API_URL = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta"
|
14 |
headers = {"Authorization": f"Bearer {hf_token}"}
|
15 |
payload = {"inputs": prompt, "parameters": {"max_new_tokens": 300}}
|
16 |
+
|
17 |
try:
|
18 |
response = requests.post(API_URL, headers=headers, json=payload, timeout=60)
|
19 |
response.raise_for_status()
|
20 |
+
return response.json()[0]["generated_text"].strip()
|
21 |
except Exception as e:
|
22 |
+
raise gr.Error(f"Erreur d'appel API Hugging Face : {str(e)}")
|
23 |
+
|
24 |
+
# Pipeline d'analyse de sentiment initial (optionnel)
|
25 |
+
classifier = pipeline("sentiment-analysis", model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis")
|
26 |
|
27 |
+
# Fonction principale d'analyse
|
28 |
+
def full_analysis(text, history):
|
29 |
+
if not text:
|
30 |
+
return "Entrez une phrase.", "", 0, history, None
|
31 |
|
32 |
+
# 1. Demander à Zephyr de donner uniquement le sentiment
|
33 |
+
prompt_sentiment = f"""
|
34 |
+
You are a financial news sentiment detector.
|
35 |
|
36 |
+
Given the following news text:
|
37 |
+
"{text}"
|
38 |
|
39 |
+
Respond only with one word: positive, neutral, or negative.
|
|
|
40 |
|
41 |
+
Do not add any explanation or extra text.
|
42 |
+
"""
|
43 |
+
detected_sentiment = call_zephyr_api(prompt_sentiment).lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
if detected_sentiment not in ["positive", "neutral", "negative"]:
|
46 |
+
detected_sentiment = "neutral"
|
|
|
|
|
47 |
|
48 |
+
# 2. Demander l'explication basée sur ce sentiment
|
49 |
+
prompt_explanation = f"""
|
50 |
+
You are a financial analyst AI.
|
51 |
|
52 |
+
Given the following financial news:
|
53 |
+
"{text}"
|
54 |
|
55 |
+
The detected sentiment is: {detected_sentiment}.
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
Now explain clearly why the sentiment is {detected_sentiment}.
|
58 |
+
Write a concise paragraph.
|
59 |
+
"""
|
60 |
+
explanation = call_zephyr_api(prompt_explanation)
|
61 |
|
62 |
+
# 3. Calculer le score de clarté
|
63 |
+
clarity_score = textstat.flesch_reading_ease(explanation)
|
64 |
+
clarity_score = max(0, min(clarity_score, 100)) # Bornage 0-100
|
65 |
|
66 |
+
# 4. Stocker dans l'historique
|
67 |
history.append({
|
68 |
"Texte": text,
|
69 |
+
"Sentiment": detected_sentiment.capitalize(),
|
70 |
+
"Clarté": f"{clarity_score:.1f}",
|
71 |
+
"Explication": explanation
|
|
|
|
|
72 |
})
|
73 |
|
74 |
+
return detected_sentiment.capitalize(), explanation, clarity_score, history, clarity_score
|
75 |
+
|
76 |
+
# Fonction pour générer la barre de clarté
|
77 |
+
def generate_clarity_bar(score, sentiment):
|
78 |
+
color = "green" if sentiment.lower() == "positive" else ("red" if sentiment.lower() == "negative" else "gray")
|
79 |
+
return gr.BarPlot.update(
|
80 |
+
value=[["Clarity", score]],
|
81 |
+
x="label",
|
82 |
+
y="value",
|
83 |
+
colors=[color],
|
84 |
+
width=400,
|
85 |
+
height=50,
|
86 |
+
y_lim=[0, 100]
|
87 |
+
)
|
88 |
+
|
89 |
+
# Fonction pour télécharger l'historique
|
90 |
def download_history(history):
|
91 |
if not history:
|
92 |
return None
|
93 |
df = pd.DataFrame(history)
|
94 |
+
file_path = "/tmp/history.csv"
|
95 |
df.to_csv(file_path, index=False)
|
96 |
return file_path
|
97 |
|
98 |
+
# Gradio Interface
|
99 |
def launch_app():
|
100 |
+
with gr.Blocks() as iface:
|
101 |
+
gr.Markdown("# 📈 Analyse Financière Premium - Zephyr7B")
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
with gr.Row():
|
104 |
+
input_text = gr.Textbox(label="Entrez votre question financière", lines=3)
|
105 |
|
106 |
with gr.Row():
|
107 |
+
analyze_btn = gr.Button("Analyser")
|
108 |
+
download_btn = gr.Button("Télécharger l'historique")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
with gr.Row():
|
111 |
+
sentiment_output = gr.Textbox(label="Sentiment Détecté")
|
112 |
+
clarity_bar = gr.BarPlot()
|
113 |
|
114 |
+
explanation_output = gr.Textbox(label="Explication de l'IA", lines=5)
|
115 |
+
clarity_score_text = gr.Textbox(label="Score de Clarté (%)")
|
116 |
+
file_output = gr.File(label="Fichier CSV")
|
|
|
|
|
117 |
|
118 |
+
history = gr.State([])
|
|
|
|
|
|
|
|
|
119 |
|
120 |
analyze_btn.click(
|
121 |
full_analysis,
|
122 |
+
inputs=[input_text, history],
|
123 |
+
outputs=[sentiment_output, explanation_output, clarity_score_text, history, clarity_bar]
|
|
|
|
|
|
|
|
|
|
|
124 |
)
|
125 |
|
126 |
download_btn.click(
|
127 |
download_history,
|
128 |
inputs=[history],
|
129 |
+
outputs=[file_output]
|
130 |
)
|
131 |
|
132 |
iface.launch()
|