""" File: ocr.py Description: Optical Character Recognition (OCR) using software 2.0 models Author: Didier Guillevic Date: 2025-04-06 """ import os os.system("bash setup.sh") import magic import vlm import uuid import shutil import threading import time import pathlib import pdf2image from pdf2image.exceptions import PDFPageCountError, PDFSyntaxError import pypdf import base64 from contextlib import contextmanager from typing import List, Optional, Tuple, Union import logging class PDFScannerTempManager: """ Manages temporary directory creation and cleanup for PDF scanning operations. """ def __init__(self, base_temp_dir: str = 'tmp'): """ Initialize temporary directory manager. Args: base_temp_dir (str): Base directory for temporary files """ self.base_temp_dir = base_temp_dir self.active_temp_dirs: list[str] = [] # Ensure base temporary directory exists os.makedirs(base_temp_dir, exist_ok=True) # Set up logging logging.basicConfig(level=logging.INFO) self.logger = logging.getLogger(__name__) @contextmanager def temp_directory(self) -> str: """ Create a temporary directory with UUID and manage its lifecycle. Yields: str: Path to the temporary directory """ # Generate unique directory name dir_uuid = str(uuid.uuid4()) temp_dir = os.path.join(self.base_temp_dir, dir_uuid) try: # Create directory os.makedirs(temp_dir, exist_ok=False) self.active_temp_dirs.append(temp_dir) # Yield directory path yield temp_dir finally: # Remove directory and its contents self._cleanup_directory(temp_dir) def _cleanup_directory(self, directory: str) -> None: """ Safely remove a temporary directory. Args: directory (str): Path to directory to remove """ try: if os.path.exists(directory): shutil.rmtree(directory) # Remove from active directories if directory in self.active_temp_dirs: self.active_temp_dirs.remove(directory) except Exception as e: self.logger.error(f"Error cleaning up directory {directory}: {e}") def cleanup_all(self) -> None: """ Clean up all temporary directories created during the session. """ for directory in list(self.active_temp_dirs): self._cleanup_directory(directory) class PDFScanner: """ A class to perform OCR on PDF files with robust temp management. """ def __init__(self, dpi: int = 300, temp_manager: Optional[PDFScannerTempManager] = None ): """ Initialize the PDFScanner. Args: dpi (int): DPI for PDF conversion temp_manager (PDFScannerTempManager, optional): Temp directory manager """ self.dpi = dpi self.temp_manager = temp_manager or PDFScannerTempManager() self.logger = logging.getLogger(__name__) def _validate_pdf(self, pdf_path: str) -> Tuple[bool, str, bool]: """ Validate PDF file and check for encryption. Returns: Tuple[bool, str, bool]: (is_valid, error_message, is_encrypted) """ try: with open(pdf_path, 'rb') as file: # Check if file starts with PDF signature if not file.read(4) == b'%PDF': return False, "Not a valid PDF file (missing PDF signature)", False # Reset file pointer file.seek(0) try: pdf_reader = pypdf.PdfReader(file, strict=False) is_encrypted = pdf_reader.is_encrypted if is_encrypted: return False, "PDF is encrypted and requires password", True num_pages = len(pdf_reader.pages) return True, f"Valid PDF with {num_pages} pages", False except pypdf.errors.PdfReadError as e: return False, f"Invalid PDF structure: {str(e)}", False except Exception as e: return False, f"Error validating PDF: {str(e)}", False def _repair_pdf(self, pdf_path: str, temp_dir: str) -> str: """ Attempt to repair a corrupted PDF file. Args: pdf_path (str): Path to original PDF temp_dir (str): Temporary directory for repair Returns: str: Path to repaired PDF """ repaired_pdf = os.path.join(temp_dir, 'repaired.pdf') try: # pypdf repair attempt with open(pdf_path, 'rb') as file: reader = pypdf.PdfReader(file, strict=False) writer = pypdf.PdfWriter() for page in reader.pages: writer.add_page(page) with open(repaired_pdf, 'wb') as output_file: writer.write(output_file) if os.path.exists(repaired_pdf): return repaired_pdf except Exception as e: self.logger.warning(f"pypdf repair failed: {str(e)}") # Ghostscript repair attempt try: gs_command = [ 'gs', '-o', repaired_pdf, '-sDEVICE=pdfwrite', '-dPDFSETTINGS=/prepress', pdf_path ] process = subprocess.run( gs_command, capture_output=True, text=True ) if process.returncode == 0 and os.path.exists(repaired_pdf): return repaired_pdf else: raise Exception(f"Ghostscript repair failed: {process.stderr}") except Exception as e: self.logger.error(f"PDF repair failed: {str(e)}") raise def _process_images( self, images: list, temp_dir: str, language: str ) -> list[str]: """Helper method to process converted images.""" extracted_text = [] for i, image in enumerate(images): image_path = os.path.join(temp_dir, f'page_{i+1}.png') try: # Save with higher quality image.save(image_path, 'PNG', quality=100) # Perform OCR text = process_image_file(image_path) extracted_text.append(text) except Exception as e: self.logger.error(f"Error processing page {i+1}: {str(e)}") extracted_text.append(f"[ERROR ON PAGE {i+1}]") return extracted_text def pdf_to_text( self, pdf_path: str, language: str = 'eng', first_page: Optional[int] = None, last_page: Optional[int] = None, attempt_repair: bool = True ) -> list[str]: """ Convert a PDF file to text using OCR with robust error handling. Args: pdf_path (str): Path to the PDF file language (str): Language for OCR (default: 'eng') first_page (int, optional): First page to process (1-based) last_page (int, optional): Last page to process attempt_repair (bool): Whether to attempt repairing corrupted PDFs Returns: list[str]: List of extracted text for each page """ if not os.path.exists(pdf_path): raise FileNotFoundError(f"PDF file not found: {pdf_path}") # Use context manager for automatic cleanup with self.temp_manager.temp_directory() as temp_dir: # Validate PDF is_valid, error_message, is_encrypted = self._validate_pdf(pdf_path) if not is_valid: self.logger.warning(f"PDF validation issue: {error_message}") if is_encrypted: raise Exception("Cannot process encrypted PDF files") if attempt_repair: try: pdf_path = self._repair_pdf(pdf_path, temp_dir) self.logger.info("Using repaired PDF file") except Exception as e: self.logger.error(f"Repair failed: {str(e)}") # Conversion methods with increasing complexity conversion_methods = [ {'use_pdftocairo': True, 'strict': False}, {'use_pdftocairo': False, 'strict': False}, {'use_pdftocairo': True, 'strict': False, 'dpi': self.dpi * 2}, {'use_pdftocairo': False, 'strict': False, 'dpi': self.dpi * 3} ] last_error = None for method in conversion_methods: try: self.logger.info(f"Trying conversion method: {method}") images = pdf2image.convert_from_path( pdf_path, dpi=method.get('dpi', self.dpi), first_page=first_page, last_page=last_page, thread_count=4, grayscale=True, **{k: v for k, v in method.items() if k != 'dpi'} ) if images: return self._process_images(images, temp_dir, language) except Exception as e: last_error = e self.logger.warning(f"Method failed: {str(e)}") continue if last_error: raise Exception(f"All conversion methods failed. Last error: {str(last_error)}") # # PDFScanner (singleton) # pdf_scanner = PDFScanner() # # Process one file # def process_file(input_file: str): """Process given file with OCR" """ file_type = get_file_type(input_file) if file_type == "Image": return process_image_file(input_file) elif file_type == "PDF": return process_pdf_file(input_file) else: return "Unsupported file type. Please upload a PDF, or an image file." def process_image_file(input_file: str): """Process image file with OCR """ messages = [ { "role": "user", "content": [ { "type": "text", "text": ( #"Could you extract the information present in the image. " #"No need to repeat the task description. Simply respond." "Could you perform optical characer recognition (OCR) on the image? " "Simply return the text without any additional comments. " "The exception would be if the image represents an ID card. " "In such a case, please return the information in a structured format. " ) }, { "type": "image_url", "image_url": f"data:image/jpeg;base64,{encode_image(input_file)}" } ] } ] return vlm.get_response(messages) def process_pdf_file(input_file: str): """Process PDF file with OCR Args: input_file: the PDF file to process with OCR Returns: the text OCR result Note: Each page of the PDF is processed as an image. """ texts = pdf_scanner.pdf_to_text(pdf_path=input_file.name) output_text = '\n\n'.join(texts) return output_text # # Get file type: PDF or Image or something else # def get_file_type(file_path): # Check file extension file_extension = os.path.splitext(file_path)[1].lower() # Check MIME type mime = magic.Magic(mime=True) mime_type = mime.from_file(file_path) # Determine file type if file_extension == '.pdf' or mime_type == 'application/pdf': return 'PDF' elif file_extension in ['.jpg', '.jpeg', '.png', '.gif'] or mime_type.startswith('image/'): return 'Image' elif file_extension == '.pptx' or mime_type == 'application/vnd.openxmlformats-officedocument.presentationml.presentation': return 'PowerPoint' else: return 'Other' # # Encode images as base64 # def encode_image(image_path): """Encode the image to base64.""" try: with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') except FileNotFoundError: print(f"Error: The file {image_path} was not found.") return None except Exception as e: # Added general exception handling print(f"Error: {e}") return None