|
from typing import Optional, Type, Dict, Tuple |
|
from pydantic import BaseModel, Field |
|
import matplotlib.pyplot as plt |
|
import skimage.io |
|
from pathlib import Path |
|
|
|
from langchain_core.callbacks import ( |
|
AsyncCallbackManagerForToolRun, |
|
CallbackManagerForToolRun, |
|
) |
|
from langchain_core.tools import BaseTool |
|
|
|
|
|
class ImageVisualizerInput(BaseModel): |
|
"""Input schema for the Image Visualizer Tool. Only supports JPG or PNG images.""" |
|
|
|
image_path: str = Field(..., description="Path to the image file to display, only supports JPG or PNG images") |
|
title: Optional[str] = Field(None, description="Optional title to display above the image") |
|
description: Optional[str] = Field( |
|
None, description="Optional description to display below the image" |
|
) |
|
figsize: Optional[tuple] = Field( |
|
(10, 10), description="Optional figure size as (width, height) in inches" |
|
) |
|
cmap: Optional[str] = Field( |
|
"rgb", description="Optional colormap to use for displaying the image" |
|
) |
|
|
|
|
|
class ImageVisualizerTool(BaseTool): |
|
"""Tool for displaying medical images to users with annotations.""" |
|
|
|
name: str = "image_visualizer" |
|
description: str = ( |
|
"Displays images to users with optional titles and descriptions. " |
|
"Input: Path to image file and optional display parameters. " |
|
"Output: Dict with image path and metadata." |
|
) |
|
args_schema: Type[BaseModel] = ImageVisualizerInput |
|
|
|
def _display_image( |
|
self, |
|
image_path: str, |
|
title: Optional[str] = None, |
|
description: Optional[str] = None, |
|
figsize: tuple = (10, 10), |
|
cmap: str = "rgb", |
|
) -> None: |
|
"""Display an image with optional annotations.""" |
|
plt.figure(figsize=figsize) |
|
|
|
img = skimage.io.imread(image_path) |
|
if len(img.shape) > 2 and cmap != "rgb": |
|
img = img[..., 0] |
|
|
|
plt.imshow(img, cmap=None if cmap == "rgb" else cmap) |
|
plt.axis("off") |
|
|
|
if title: |
|
plt.title(title, pad=15, fontsize=12) |
|
|
|
|
|
if description: |
|
plt.figtext( |
|
0.5, 0.01, description, wrap=True, horizontalalignment="center", fontsize=10 |
|
) |
|
|
|
|
|
plt.subplots_adjust(top=0.95, bottom=0.05, left=0.05, right=0.95) |
|
plt.show() |
|
|
|
def _run( |
|
self, |
|
image_path: str, |
|
title: Optional[str] = None, |
|
description: Optional[str] = None, |
|
figsize: tuple = (10, 10), |
|
cmap: str = "rgb", |
|
run_manager: Optional[CallbackManagerForToolRun] = None, |
|
) -> dict: |
|
""" |
|
Display an image to the user with optional annotations. |
|
|
|
Args: |
|
image_path: Path to the image file |
|
title: Optional title to display above image |
|
description: Optional description to display below image |
|
figsize: Optional figure size as (width, height) |
|
cmap: Optional colormap to use for displaying the image |
|
run_manager: Optional callback manager |
|
|
|
Returns: |
|
Dict containing display status and metadata |
|
""" |
|
try: |
|
|
|
if not Path(image_path).is_file(): |
|
raise FileNotFoundError(f"Image file not found: {image_path}") |
|
|
|
|
|
|
|
|
|
output = {"image_path": image_path} |
|
metadata = { |
|
"image_path": image_path, |
|
"title": bool(title), |
|
"description": bool(description), |
|
"figsize": figsize, |
|
"cmap": cmap, |
|
"analysis_status": "completed", |
|
} |
|
return output, metadata |
|
|
|
except Exception as e: |
|
return ( |
|
{"error": str(e)}, |
|
{ |
|
"image_path": image_path, |
|
"visualization_status": "failed", |
|
"note": "An error occurred during image visualization", |
|
}, |
|
) |
|
|
|
async def _arun( |
|
self, |
|
image_path: str, |
|
title: Optional[str] = None, |
|
description: Optional[str] = None, |
|
figsize: tuple = (10, 10), |
|
cmap: str = "rgb", |
|
run_manager: Optional[AsyncCallbackManagerForToolRun] = None, |
|
) -> Tuple[Dict[str, any], Dict]: |
|
"""Async version of _run.""" |
|
return self._run(image_path, title, description, figsize, cmap) |
|
|