|
from typing import Dict, List, Optional, Any, Union |
|
import re |
|
import json |
|
import os |
|
import glob |
|
import time |
|
import logging |
|
import socket |
|
import requests |
|
import httpx |
|
import backoff |
|
from datetime import datetime |
|
from tenacity import retry, wait_exponential, stop_after_attempt |
|
from openai import OpenAI |
|
|
|
|
|
MODEL_NAME = "meta-llama/llama-3.2-90b-vision-instruct" |
|
temperature = 0.2 |
|
|
|
|
|
log_filename = f"api_usage_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json" |
|
logging.basicConfig(filename=log_filename, level=logging.INFO, format="%(message)s") |
|
|
|
|
|
def verify_dns() -> bool: |
|
"""Verify DNS resolution and connectivity. |
|
|
|
Returns: |
|
bool: True if DNS resolution succeeds, False otherwise |
|
""" |
|
try: |
|
|
|
socket.gethostbyname("openrouter.ai") |
|
return True |
|
except socket.gaierror: |
|
print("DNS resolution failed. Trying to use Google DNS (8.8.8.8)...") |
|
|
|
try: |
|
with open("/etc/resolv.conf", "w") as f: |
|
f.write("nameserver 8.8.8.8\n") |
|
return True |
|
except Exception as e: |
|
print(f"Failed to update DNS settings: {e}") |
|
return False |
|
|
|
|
|
def verify_connection() -> bool: |
|
"""Verify connection to OpenRouter API. |
|
|
|
Returns: |
|
bool: True if connection succeeds, False otherwise |
|
""" |
|
try: |
|
response = requests.get("https://openrouter.ai/api/v1/status", timeout=10) |
|
return response.status_code == 200 |
|
except Exception as e: |
|
print(f"Connection test failed: {e}") |
|
return False |
|
|
|
|
|
def initialize_client() -> OpenAI: |
|
"""Initialize the OpenRouter client with proper timeout settings and connection verification. |
|
|
|
Returns: |
|
OpenAI: Configured OpenAI client for OpenRouter |
|
|
|
Raises: |
|
ValueError: If OPENROUTER_API_KEY environment variable is not set |
|
ConnectionError: If DNS verification or connection test fails |
|
""" |
|
api_key = os.getenv("OPENROUTER_API_KEY") |
|
if not api_key: |
|
raise ValueError("OPENROUTER_API_KEY environment variable is not set.") |
|
|
|
|
|
timeout_settings = 120 |
|
|
|
|
|
if not verify_dns(): |
|
raise ConnectionError("DNS verification failed. Please check your network settings.") |
|
|
|
if not verify_connection(): |
|
raise ConnectionError( |
|
"Cannot connect to OpenRouter. Please check your internet connection." |
|
) |
|
|
|
|
|
return OpenAI( |
|
base_url="https://openrouter.ai/api/v1", |
|
api_key=api_key, |
|
timeout=timeout_settings, |
|
http_client=httpx.Client( |
|
timeout=timeout_settings, transport=httpx.HTTPTransport(retries=3) |
|
), |
|
) |
|
|
|
|
|
@backoff.on_exception( |
|
backoff.expo, |
|
(ConnectionError, TimeoutError, socket.gaierror, httpx.ConnectError), |
|
max_tries=5, |
|
max_time=300, |
|
) |
|
def create_multimodal_request( |
|
question_data: Dict[str, Any], |
|
case_details: Dict[str, Any], |
|
case_id: str, |
|
question_id: str, |
|
client: OpenAI, |
|
) -> Optional[Any]: |
|
"""Create and send a multimodal request to the model. |
|
|
|
Args: |
|
question_data: Dictionary containing question details |
|
case_details: Dictionary containing case information |
|
case_id: ID of the medical case |
|
question_id: ID of the specific question |
|
client: OpenAI client instance |
|
|
|
Returns: |
|
Optional[Any]: Model response if successful, None if skipped |
|
|
|
Raises: |
|
ConnectionError: If connection fails |
|
TimeoutError: If request times out |
|
Exception: For other errors |
|
""" |
|
|
|
system_prompt = """You are a medical imaging expert. Your task is to provide ONLY a single letter answer. |
|
Rules: |
|
1. Respond with exactly one uppercase letter (A/B/C/D/E/F) |
|
2. Do not add periods, explanations, or any other text |
|
3. Do not use markdown or formatting |
|
4. Do not restate the question |
|
5. Do not explain your reasoning |
|
|
|
Examples of valid responses: |
|
A |
|
B |
|
C |
|
|
|
Examples of invalid responses: |
|
"A." |
|
"Answer: B" |
|
"C) This shows..." |
|
"The answer is D" |
|
""" |
|
|
|
prompt = f"""Given the following medical case: |
|
Please answer this multiple choice question: |
|
{question_data['question']} |
|
Base your answer only on the provided images and case information.""" |
|
|
|
|
|
try: |
|
if isinstance(question_data["figures"], str): |
|
try: |
|
required_figures = json.loads(question_data["figures"]) |
|
except json.JSONDecodeError: |
|
required_figures = [question_data["figures"]] |
|
elif isinstance(question_data["figures"], list): |
|
required_figures = question_data["figures"] |
|
else: |
|
required_figures = [str(question_data["figures"])] |
|
except Exception as e: |
|
print(f"Error parsing figures: {e}") |
|
required_figures = [] |
|
|
|
required_figures = [ |
|
fig if fig.startswith("Figure ") else f"Figure {fig}" for fig in required_figures |
|
] |
|
|
|
|
|
content = [{"type": "text", "text": prompt}] |
|
image_urls = [] |
|
image_captions = [] |
|
|
|
for figure in required_figures: |
|
base_figure_num = "".join(filter(str.isdigit, figure)) |
|
figure_letter = "".join(filter(str.isalpha, figure.split()[-1])) or None |
|
|
|
matching_figures = [ |
|
case_figure |
|
for case_figure in case_details.get("figures", []) |
|
if case_figure["number"] == f"Figure {base_figure_num}" |
|
] |
|
|
|
for case_figure in matching_figures: |
|
subfigures = [] |
|
if figure_letter: |
|
subfigures = [ |
|
subfig |
|
for subfig in case_figure.get("subfigures", []) |
|
if subfig.get("number", "").lower().endswith(figure_letter.lower()) |
|
or subfig.get("label", "").lower() == figure_letter.lower() |
|
] |
|
else: |
|
subfigures = case_figure.get("subfigures", []) |
|
|
|
for subfig in subfigures: |
|
if "url" in subfig: |
|
content.append({"type": "image_url", "image_url": {"url": subfig["url"]}}) |
|
image_urls.append(subfig["url"]) |
|
image_captions.append(subfig.get("caption", "")) |
|
|
|
if len(content) == 1: |
|
print(f"No images found for case {case_id}, question {question_id}") |
|
|
|
log_entry = { |
|
"case_id": case_id, |
|
"question_id": question_id, |
|
"timestamp": datetime.now().isoformat(), |
|
"model": MODEL_NAME, |
|
"status": "skipped", |
|
"reason": "no_images", |
|
"input": { |
|
"question_data": { |
|
"question": question_data["question"], |
|
"explanation": question_data["explanation"], |
|
"metadata": question_data.get("metadata", {}), |
|
"figures": question_data["figures"], |
|
}, |
|
"image_urls": image_urls, |
|
}, |
|
} |
|
logging.info(json.dumps(log_entry)) |
|
return None |
|
|
|
try: |
|
start_time = time.time() |
|
|
|
response = client.chat.completions.create( |
|
model=MODEL_NAME, |
|
temperature=temperature, |
|
messages=[ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": content}, |
|
], |
|
) |
|
duration = time.time() - start_time |
|
|
|
|
|
raw_answer = response.choices[0].message.content |
|
|
|
|
|
clean_answer = validate_answer(raw_answer) |
|
|
|
if not clean_answer: |
|
print(f"Warning: Invalid response format for case {case_id}, question {question_id}") |
|
print(f"Raw response: {raw_answer}") |
|
|
|
|
|
response.choices[0].message.content = clean_answer |
|
|
|
|
|
log_entry = { |
|
"case_id": case_id, |
|
"question_id": question_id, |
|
"timestamp": datetime.now().isoformat(), |
|
"model": MODEL_NAME, |
|
"temperature": temperature, |
|
"duration": round(duration, 2), |
|
"usage": { |
|
"prompt_tokens": response.usage.prompt_tokens, |
|
"completion_tokens": response.usage.completion_tokens, |
|
"total_tokens": response.usage.total_tokens, |
|
}, |
|
"model_answer": response.choices[0].message.content, |
|
"correct_answer": question_data["answer"], |
|
"input": { |
|
"question_data": { |
|
"question": question_data["question"], |
|
"explanation": question_data["explanation"], |
|
"metadata": question_data.get("metadata", {}), |
|
"figures": question_data["figures"], |
|
}, |
|
"image_urls": image_urls, |
|
}, |
|
} |
|
logging.info(json.dumps(log_entry)) |
|
return response |
|
|
|
except ConnectionError as e: |
|
print(f"Connection error for case {case_id}, question {question_id}: {str(e)}") |
|
print("Retrying after a longer delay...") |
|
time.sleep(30) |
|
raise |
|
except TimeoutError as e: |
|
print(f"Timeout error for case {case_id}, question {question_id}: {str(e)}") |
|
print("Retrying with increased timeout...") |
|
raise |
|
except Exception as e: |
|
|
|
log_entry = { |
|
"case_id": case_id, |
|
"question_id": question_id, |
|
"timestamp": datetime.now().isoformat(), |
|
"model": MODEL_NAME, |
|
"temperature": temperature, |
|
"status": "error", |
|
"error": str(e), |
|
"input": { |
|
"question_data": { |
|
"question": question_data["question"], |
|
"explanation": question_data["explanation"], |
|
"metadata": question_data.get("metadata", {}), |
|
"figures": question_data["figures"], |
|
}, |
|
"image_urls": image_urls, |
|
}, |
|
} |
|
logging.info(json.dumps(log_entry)) |
|
raise |
|
|
|
|
|
def extract_answer(response_text: str) -> Optional[str]: |
|
"""Extract single letter answer from model response. |
|
|
|
Args: |
|
response_text: Raw text response from model |
|
|
|
Returns: |
|
Optional[str]: Single letter answer if found, None otherwise |
|
""" |
|
|
|
text = response_text.upper().replace(".", "") |
|
|
|
|
|
patterns = [ |
|
r"ANSWER:\s*([A-F])", |
|
r"OPTION\s*([A-F])", |
|
r"([A-F])\)", |
|
r"\b([A-F])\b", |
|
] |
|
|
|
for pattern in patterns: |
|
matches = re.findall(pattern, text) |
|
if matches: |
|
return matches[0] |
|
|
|
return None |
|
|
|
|
|
def validate_answer(response_text: str) -> Optional[str]: |
|
"""Enforce strict single-letter response format. |
|
|
|
Args: |
|
response_text: Raw text response from model |
|
|
|
Returns: |
|
Optional[str]: Valid single letter answer if found, None otherwise |
|
""" |
|
if not response_text: |
|
return None |
|
|
|
|
|
cleaned = response_text.strip().upper() |
|
|
|
|
|
if len(cleaned) == 1 and cleaned in "ABCDEF": |
|
return cleaned |
|
|
|
|
|
match = re.search(r"([A-F])", cleaned) |
|
return match.group(1) if match else None |
|
|
|
|
|
def load_benchmark_questions(case_id: str) -> List[str]: |
|
"""Find all question files for a given case ID. |
|
|
|
Args: |
|
case_id: ID of the medical case |
|
|
|
Returns: |
|
List[str]: List of paths to question files |
|
""" |
|
benchmark_dir = "../benchmark/questions" |
|
return glob.glob(f"{benchmark_dir}/{case_id}/{case_id}_*.json") |
|
|
|
|
|
def count_total_questions() -> Tuple[int, int]: |
|
"""Count total number of cases and questions. |
|
|
|
Returns: |
|
Tuple[int, int]: (total_cases, total_questions) |
|
""" |
|
total_cases = len(glob.glob("../benchmark/questions/*")) |
|
total_questions = sum( |
|
len(glob.glob(f"../benchmark/questions/{case_id}/*.json")) |
|
for case_id in os.listdir("../benchmark/questions") |
|
) |
|
return total_cases, total_questions |
|
|
|
|
|
def main(): |
|
with open("../data/eurorad_metadata.json", "r") as file: |
|
data = json.load(file) |
|
|
|
client = initialize_client() |
|
total_cases, total_questions = count_total_questions() |
|
cases_processed = 0 |
|
questions_processed = 0 |
|
skipped_questions = 0 |
|
|
|
print(f"Beginning benchmark evaluation for {MODEL_NAME} with temperature {temperature}") |
|
|
|
for case_id, case_details in data.items(): |
|
question_files = load_benchmark_questions(case_id) |
|
if not question_files: |
|
continue |
|
|
|
cases_processed += 1 |
|
for question_file in question_files: |
|
with open(question_file, "r") as file: |
|
question_data = json.load(file) |
|
question_id = os.path.basename(question_file).split(".")[0] |
|
|
|
questions_processed += 1 |
|
response = create_multimodal_request( |
|
question_data, case_details, case_id, question_id, client |
|
) |
|
|
|
if response is None: |
|
skipped_questions += 1 |
|
print(f"Skipped question: Case ID {case_id}, Question ID {question_id}") |
|
continue |
|
|
|
print( |
|
f"Progress: Case {cases_processed}/{total_cases}, Question {questions_processed}/{total_questions}" |
|
) |
|
print(f"Case ID: {case_id}") |
|
print(f"Question ID: {question_id}") |
|
print(f"Model Answer: {response.choices[0].message.content}") |
|
print(f"Correct Answer: {question_data['answer']}\n") |
|
|
|
print(f"\nBenchmark Summary:") |
|
print(f"Total Cases Processed: {cases_processed}") |
|
print(f"Total Questions Processed: {questions_processed}") |
|
print(f"Total Questions Skipped: {skipped_questions}") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|