File size: 6,581 Bytes
cb3a670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from typing import Optional, List
import argparse
import json
import glob
from pathlib import Path
from datetime import datetime


def get_latest_log() -> str:
    """Find the most recently modified log file in the current directory.

    Returns:
        str: Path to the most recently modified log file

    Raises:
        FileNotFoundError: If no log files are found in the current directory
    """
    logs = list(Path(".").glob("api_usage_*.json"))
    if not logs:
        raise FileNotFoundError("No log files found in the current directory.")
    return str(max(logs, key=lambda p: p.stat().st_mtime))


def format_cost(entry: dict) -> str:
    """Format cost if available, otherwise return 'N/A'

    Args:
        entry: Log entry dictionary containing cost information

    Returns:
        str: Formatted cost string with $ and 4 decimal places, or 'N/A' if cost not found
    """
    return f"${entry.get('cost', 'N/A'):.4f}" if "cost" in entry else "N/A"


def print_gpt4_entry(entry: dict) -> None:
    """Print entry for GPT-4 format

    Args:
        entry: Log entry dictionary in GPT-4 format containing model info, inputs and outputs
    """
    print("\n=== Log Entry ===")
    print(f"Model: {entry['model']}")
    print(f"Case ID: {entry['case_id']}")
    print(f"Question ID: {entry['question_id']}")

    print("\n=== Model Input ===")
    messages = entry["input"]["messages"]
    print("System message:", messages[0]["content"])
    user_content = messages[1]["content"]
    print("\nUser prompt:", user_content[0]["text"])
    print("\nImages provided:")
    for content in user_content[1:]:
        print(f"  - {content['image_url']['url']}")

    print("\n=== Model Output ===")
    print(f"Answer: {entry['model_answer']}")
    print(f"Correct: {entry['correct_answer']}")

    print("\n=== Usage Stats ===")
    print(f"Duration: {entry['duration']}s")
    print(f"Cost: {format_cost(entry)}")
    print(
        f"Tokens: {entry['usage']['total_tokens']}",
        f"(prompt: {entry['usage']['prompt_tokens']},",
        f"completion: {entry['usage']['completion_tokens']})",
    )


def print_llama_entry(entry: dict) -> None:
    """Print entry for Llama-3.2 format

    Args:
        entry: Log entry dictionary in Llama format containing model info, inputs and outputs
    """
    print("\n=== Log Entry ===")
    print(f"Model: {entry['model']}")
    print(f"Case ID: {entry['case_id']}")
    print(f"Question ID: {entry['question_id']}")

    print("\n=== Model Input ===")
    print(f"Question: {entry['input']['question_data']['question']}")
    print("\nImages provided:")
    for url in entry["input"]["image_urls"]:
        print(f"  - {url}")
    if entry["input"]["image_captions"]:
        print("\nImage captions:")
        for caption in entry["input"]["image_captions"]:
            if caption:
                print(f"  - {caption}")

    print("\n=== Model Output ===")
    print(f"Answer: {entry['model_answer']}")
    print(f"Correct: {entry['correct_answer']}")

    print("\n=== Usage Stats ===")
    print(f"Duration: {entry['duration']}s")
    if "usage" in entry:
        print(
            f"Tokens: {entry['usage']['total_tokens']}",
            f"(prompt: {entry['usage']['prompt_tokens']},",
            f"completion: {entry['usage']['completion_tokens']})",
        )


def determine_model_type(entry: dict) -> str:
    """Determine the model type from the entry

    Args:
        entry: Log entry dictionary containing model information

    Returns:
        str: Model type - 'gpt4', 'llama', or 'unknown'
    """
    model = entry.get("model", "").lower()
    if "gpt-4" in model:
        return "gpt4"
    elif "llama" in model:
        return "llama"
    elif "chexagent" in model:
        return "chexagent"
    elif "medrax" in model:
        return "medrax"
    else:
        return "unknown"


def print_log_entry(
    log_file: Optional[str] = None,
    num_entries: Optional[int] = None,
    model_filter: Optional[str] = None,
) -> None:
    """Print log entries from the specified log file or the latest log file.

    Args:
        log_file: Path to the log file. If None, uses the latest log file.
        num_entries: Number of entries to print. If None, prints all entries.
        model_filter: Filter entries by model type ('gpt4' or 'llama'). If None, prints all.
    """
    if log_file is None:
        log_file = get_latest_log()
        print(f"Using latest log file: {log_file}")

    entries_printed = 0
    total_entries = 0
    filtered_entries = 0

    with open(log_file, "r") as f:
        for line in f:
            if line.startswith("HTTP"):
                continue
            try:
                total_entries += 1
                entry = json.loads(line)

                # Apply model filter if specified
                model_type = determine_model_type(entry)
                if model_filter and model_type != model_filter:
                    filtered_entries += 1
                    continue

                if model_type == "gpt4":
                    print_gpt4_entry(entry)
                elif model_type == "llama":
                    print_llama_entry(entry)
                else:
                    print(f"Unknown model type in entry: {entry['model']}")
                    continue

                print("=" * 50)
                entries_printed += 1
                if num_entries and entries_printed >= num_entries:
                    break

            except (json.JSONDecodeError, KeyError) as e:
                print(f"Error processing entry: {e}")
                continue

    print(f"\nSummary:")
    print(f"Total entries: {total_entries}")
    print(f"Entries printed: {entries_printed}")
    if model_filter:
        print(f"Entries filtered: {filtered_entries}")


def main() -> None:
    """Main entry point for the script"""
    parser = argparse.ArgumentParser(
        description="Parse and display log entries from API usage logs."
    )
    parser.add_argument("-l", "--log_file", nargs="?", help="Path to the log file (optional)")
    parser.add_argument("-n", "--num_entries", type=int, help="Number of entries to display")
    parser.add_argument(
        "-m",
        "--model",
        choices=["gpt4", "llama"],
        default="gpt4",
        help="Model type to display (default: gpt4)",
    )
    args = parser.parse_args()

    try:
        print_log_entry(args.log_file, args.num_entries, args.model)
    except FileNotFoundError as e:
        print(f"Error: {e}")
        exit(1)


if __name__ == "__main__":
    main()