File size: 25,468 Bytes
b9a43be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
import gradio as gr
import pandas as pd
import json
import os
from utils.logger import create_log_entry, log_experiment_results
from utils.file_utils import load_csv, preview_dataframe, get_column_names
from utils.training import train_models
from utils.preprocessing import preprocess_data
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV, ParameterGrid, train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import numpy as np
from utils.training import get_model_instance
try:
from skopt import BayesSearchCV
bayes_available = True
except ImportError:
bayes_available = False
session = {
"raw_df": None,
"df": None,
"features": [],
"target": None,
"columns": [],
"missing_strategy": "drop",
"transformation_text": ""
}
# ---------------------------
# Dahsboard
# ---------------------------
# ---------------------------
# Step 1: File Upload Handler
# ---------------------------
def handle_upload(file):
if file is None:
return "No file uploaded", None, gr.update(choices=[]), gr.update(choices=[])
try:
df, err = load_csv(file.name)
session["uploaded_filename"] = file.name
if err:
return f"Error: {err}", None, gr.update(choices=[]), gr.update(choices=[])
session["raw_df"] = df.copy()
session["df"] = df.copy() # Initialize processed df as raw df
columns = get_column_names(df)
session["columns"] = columns
return (
"File uploaded successfully!",
preview_dataframe(df),
gr.update(choices=columns, value=[]),
gr.update(choices=columns, value=None)
)
except Exception as e:
return f"Error: {e}", None, gr.update(choices=[]), gr.update(choices=[])
# ---------------------------
# Step 2: Global Missing Value Strategy
# ---------------------------
def save_missing_strategy(missing_strategy):
raw_df = session.get("raw_df")
target_col = session.get("target", "")
if raw_df is None:
return "No data available", None
processed_df = preprocess_data(raw_df.copy(), target_col=target_col, missing_strategy=missing_strategy, transformation_map={})
session["df"] = processed_df
session["missing_strategy"] = missing_strategy # Store in session
return f"Missing value strategy '{missing_strategy}' applied", preview_dataframe(processed_df)
# ---------------------------
# Step 3: Save Features and Target Selection (Filter DataFrame)
# ---------------------------
def save_feature_target_selection(features, target):
if session.get("df") is None:
return "No data available", "", None
session["features"] = features
session["target"] = target
selected_cols = features.copy()
if target and target not in selected_cols:
selected_cols.append(target)
filtered_df = session["df"][selected_cols]
session["df"] = filtered_df
default_trans = ", ".join(["No Transformation"] * len(features)) if features else ""
return f"Selected {len(features)} features and target: {target}", default_trans, preview_dataframe(filtered_df)
# ---------------------------
# Step 4: Save Transformation Options
# ---------------------------
def save_transformation_options(transformation_text):
if session.get("df") is None or not session.get("features"):
return "No data or features available", None
trans_list = [t.strip() for t in transformation_text.split(",")] if transformation_text.strip() != "" else []
if len(trans_list) < len(session["features"]):
trans_list += ["No Transformation"] * (len(session["features"]) - len(trans_list))
transformation_mapping = {session["features"][i]: trans_list[i] for i in range(len(session["features"]))}
df = session.get("df").copy()
def apply_transformations(df, transformation_map):
for col, transform in transformation_map.items():
if transform == "Label Encode":
if df[col].dtype == "object" or str(df[col].dtype).startswith("category"):
df[col] = LabelEncoder().fit_transform(df[col])
else:
df[col] = LabelEncoder().fit_transform(df[col].astype(str))
elif transform == "Normalize":
scaler = StandardScaler()
df[[col]] = scaler.fit_transform(df[[col]])
return df
processed_df = apply_transformations(df, transformation_mapping)
session["df"] = processed_df
session["transformation_text"] = transformation_text # Store in session
return "Transformation options applied", preview_dataframe(processed_df)
# ---------------------------
# Model Training Function
# ---------------------------
def train_selected_models(experiment_title, selected_models, lr_c, lr_max_iter, dt_max_depth, dt_min_samples_split,
rf_n_estimators, rf_max_depth, svm_c, svm_kernel, nb_var_smoothing,
train_size):
df = session.get("df")
features = session.get("features")
target = session.get("target")
missing_strategy = session.get("missing_strategy", "drop")
transformation_text = session.get("transformation_text", "")
if df is None or not features or target is None or not selected_models:
return "Please ensure data is uploaded, features/target selected, and models chosen."
trans_list = [t.strip() for t in transformation_text.split(",")] if transformation_text.strip() != "" else []
if len(trans_list) < len(features):
trans_list += ["No Transformation"] * (len(features) - len(trans_list))
transformation_mapping = {features[i]: trans_list[i] for i in range(len(features))}
preprocessing_steps = [f"Missing Value: {missing_strategy}"] + [f"{k}: {v}" for k, v in transformation_mapping.items()]
test_size = 1 - train_size
if not set(features).issubset(df.columns):
return "Selected features not found in the processed data."
X = df[features]
y = df[target]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
model_params = {
"Logistic Regression": {"C": lr_c, "max_iter": lr_max_iter},
"Decision Tree": {"max_depth": dt_max_depth, "min_samples_split": dt_min_samples_split},
"Random Forest": {"n_estimators": rf_n_estimators, "max_depth": rf_max_depth},
"SVM": {"C": svm_c, "kernel": svm_kernel},
"Naive Bayes": {"var_smoothing": nb_var_smoothing}
}
training_logs = train_models(X_train, X_test, y_train, y_test, selected_models, model_params, preprocessing_steps)
session["trained_models"] = {model: training_logs[model]["model"] for model in selected_models}
session["X_test"] = X_test
session["y_test"] = y_test
experiment_logs = []
for model_name in selected_models:
entry = create_log_entry(
experiment_title,
model_name,
model_params[model_name],
"",
preprocessing_steps,
training_logs[model_name]["metrics"],
training_logs[model_name].get("training_time", 0),
training_logs[model_name]["model"]
)
experiment_logs.append(entry)
log_experiment_results(experiment_logs)
formatted_results = "\n".join([f"{model}: {training_logs[model]['metrics']}" for model in selected_models])
return formatted_results
# ---------------------------
# Hyperparameter Tuning Function (Grid Search Example)
# ---------------------------
def run_hyperparameter_tuning(experiment_title, selected_models):
df = session.get("df")
features = session.get("features")
target = session.get("target")
if df is None or not features or target is None or not selected_models:
return "Please ensure data is uploaded, features/target selected, and models chosen.", None
X = df[features]
y = df[target]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
strategy_map = {
"Grid Search": GridSearchCV,
"Random Search": RandomizedSearchCV
}
if bayes_available:
from skopt import BayesSearchCV
strategy_map["Bayesian Optimization"] = BayesSearchCV
param_grids = {
"Logistic Regression": {"C": [0.01, 0.1, 1, 10], "max_iter": [100, 200, 300]},
"Decision Tree": {"max_depth": [3, 5, 10, None], "min_samples_split": [2, 5, 10]},
"Random Forest": {"n_estimators": [50, 100, 200], "max_depth": [None, 10, 20]},
"SVM": {"C": [0.1, 1, 10], "kernel": ["linear", "rbf"]},
"Naive Bayes": {"var_smoothing": np.logspace(-10, -8, 5)}
}
all_logs = []
status_texts = []
for model_name in selected_models:
best_overall_score = -1
best_overall_summary = None
for strategy_name, strategy_cls in strategy_map.items():
try:
model = get_model_instance(model_name, {})
if strategy_name == "Grid Search":
searcher = strategy_cls(
model,
param_grid=param_grids[model_name],
scoring="accuracy",
cv=5
)
elif strategy_name == "Random Search":
searcher = strategy_cls(
model,
param_distributions=param_grids[model_name],
scoring="accuracy",
cv=5,
n_iter=min(10, len(list(ParameterGrid(param_grids[model_name]))))
)
elif strategy_name == "Bayesian Optimization":
searcher = strategy_cls(
model,
search_spaces=param_grids[model_name],
scoring="accuracy",
cv=5,
n_iter=10
)
else:
continue
searcher.fit(X_train, y_train)
best_estimator = searcher.best_estimator_
best_params = searcher.best_params_
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
y_train_pred = best_estimator.predict(X_train)
y_test_pred = best_estimator.predict(X_test)
metrics = {
"accuracy_train": accuracy_score(y_train, y_train_pred),
"accuracy_test": accuracy_score(y_test, y_test_pred),
"precision_train": precision_score(y_train, y_train_pred, average='weighted', zero_division=0),
"precision_test": precision_score(y_test, y_test_pred, average='weighted', zero_division=0),
"recall_train": recall_score(y_train, y_train_pred, average='weighted', zero_division=0),
"recall_test": recall_score(y_test, y_test_pred, average='weighted', zero_division=0),
"f1_score_train": f1_score(y_train, y_train_pred, average='weighted', zero_division=0),
"f1_score_test": f1_score(y_test, y_test_pred, average='weighted', zero_division=0)
}
log_entry = create_log_entry(
experiment_title,
f"Hyperparameter Tuned {model_name} ({strategy_name})",
best_params,
"",
[f"Strategy: {strategy_name}"],
metrics,
0,
best_estimator
)
all_logs.append(log_entry)
if searcher.best_score_ > best_overall_score:
best_overall_score = searcher.best_score_
best_overall_summary = f"{model_name} ({strategy_name}):\n" + "\n".join(
[f"{k}: {v:.4f}" for k, v in metrics.items()]
)
except Exception as e:
continue
if best_overall_summary:
status_texts.append(best_overall_summary)
else:
status_texts.append(f"{model_name}: All tuning strategies failed.")
log_experiment_results(all_logs)
return "\n\n".join(status_texts), "Tuning complete!"
###--------------------dahsboard
###--------------------dahsboard
# ---------------------------
# Gradio Interface Layout
# ---------------------------
with gr.Blocks() as demo:
gr.Markdown("## ML Model Builder")
with gr.Tab("Data Upload & Preprocessing"):
# Step 1: File Upload
gr.Markdown("### Step 1: Upload File")
with gr.Row():
file_input = gr.File(label="Upload CSV File", file_types=[".csv"])
upload_status = gr.Textbox(label="Upload Status", interactive=False)
df_preview = gr.Dataframe(label="Raw Data Preview", interactive=False)
# Step 2: Global Missing Value Strategy
gr.Markdown("### Step 2: Global Missing Value Strategy")
missing_strategy_dropdown = gr.Dropdown(
label="Missing Value Strategy",
choices=["drop", "mean", "median", "mode"],
value="drop",
info="Select how to handle missing values for all columns."
)
save_missing_btn = gr.Button("Save Missing Value Strategy")
missing_status = gr.Textbox(label="Missing Strategy Status", interactive=False)
missing_preview = gr.Dataframe(label="Data Preview after Missing Strategy", interactive=False)
# Step 3: Select Features and Target
gr.Markdown("### Step 3: Select Features and Target")
feature_selector = gr.CheckboxGroup(label="Select Input Features", choices=[], interactive=True)
target_selector = gr.Dropdown(label="Select Target Column", choices=[], interactive=True)
save_features_btn = gr.Button("Save Features and Target")
features_status = gr.Textbox(label="Features/Target Status", interactive=False)
features_preview = gr.Dataframe(label="Data Preview after Feature Selection", interactive=False)
# Step 4: Transformation Options
gr.Markdown("### Step 4: Transformation Options")
gr.Markdown(
"For each selected feature (in order), specify a transformation. Allowed options: **No Transformation**, **Label Encode**, **Normalize**. "
"Enter your choices as a comma-separated list. E.g.: No Transformation, Label Encode, Normalize"
)
transformation_text = gr.Textbox(label="Transformation Options", placeholder="E.g. No Transformation, Label Encode, Normalize", lines=1)
save_transformation_btn = gr.Button("Save Transformation Options")
transformation_status = gr.Textbox(label="Transformation Status", interactive=False)
transformation_preview = gr.Dataframe(label="Data Preview after Transformation", interactive=False)
with gr.Tab("Model Training"):
gr.Markdown("### Model Training and Experiment Logging")
# Global Experiment Title Input
experiment_title_input = gr.Textbox(label="Experiment Title", placeholder="Enter a title for this experiment", lines=1)
gr.Markdown("### Model Selection and Hyperparameter Tuning")
model_selector = gr.CheckboxGroup(
label="Select Models to Train",
choices=["Logistic Regression", "Decision Tree", "Random Forest", "SVM", "Naive Bayes"],
value=[], interactive=True
)
with gr.Column(visible=False) as lr_col:
gr.Markdown("**Logistic Regression**")
lr_c = gr.Slider(0.01, 10.0, step=0.01, value=1.0, label="C", interactive=True)
lr_max_iter = gr.Slider(50, 500, step=10, value=100, label="Max Iterations", interactive=True)
with gr.Column(visible=False) as dt_col:
gr.Markdown("**Decision Tree**")
dt_max_depth = gr.Slider(1, 50, step=1, value=10, label="Max Depth", interactive=True)
dt_min_samples_split = gr.Slider(2, 10, step=1, value=2, label="Min Samples Split", interactive=True)
with gr.Column(visible=False) as rf_col:
gr.Markdown("**Random Forest**")
rf_n_estimators = gr.Slider(10, 200, step=10, value=100, label="N Estimators", interactive=True)
rf_max_depth = gr.Slider(1, 50, step=1, value=10, label="Max Depth", interactive=True)
with gr.Column(visible=False) as svm_col:
gr.Markdown("**SVM**")
svm_c = gr.Slider(0.01, 10.0, step=0.01, value=1.0, label="C", interactive=True)
svm_kernel = gr.Radio(["linear", "poly", "rbf", "sigmoid"], value="rbf", label="Kernel", interactive=True)
with gr.Column(visible=False) as nb_col:
gr.Markdown("**Naive Bayes**")
nb_var_smoothing = gr.Slider(1e-10, 1e-5, step=1e-10, value=1e-9, label="Var Smoothing", interactive=True)
model_columns = {
"Logistic Regression": lr_col,
"Decision Tree": dt_col,
"Random Forest": rf_col,
"SVM": svm_col,
"Naive Bayes": nb_col,
}
def toggle_model_ui(selected_models):
updates = []
for model_name, panel in model_columns.items():
updates.append(gr.update(visible=(model_name in selected_models)))
return updates
model_selector.change(
fn=toggle_model_ui,
inputs=model_selector,
outputs=[lr_col, dt_col, rf_col, svm_col, nb_col]
)
gr.Markdown("### Training Parameters")
train_slider = gr.Slider(minimum=0.5, maximum=0.9, step=0.05, value=0.8, label="Training Set Size (proportion)", interactive=True)
train_btn = gr.Button("Train Selected Models")
training_output = gr.Textbox(label="Training Output", lines=8, interactive=False)
# ---------------------------
# Define Component Interactions
# ---------------------------
file_input.change(
fn=handle_upload,
inputs=file_input,
outputs=[upload_status, df_preview, feature_selector, target_selector]
)
save_missing_btn.click(
fn=save_missing_strategy,
inputs=missing_strategy_dropdown,
outputs=[missing_status, missing_preview]
)
save_features_btn.click(
fn=save_feature_target_selection,
inputs=[feature_selector, target_selector],
outputs=[features_status, transformation_text, features_preview]
)
save_transformation_btn.click(
fn=save_transformation_options,
inputs=transformation_text,
outputs=[transformation_status, transformation_preview]
)
train_btn.click(
fn=train_selected_models,
inputs=[
experiment_title_input,
model_selector,
lr_c, lr_max_iter,
dt_max_depth, dt_min_samples_split,
rf_n_estimators, rf_max_depth,
svm_c, svm_kernel,
nb_var_smoothing,
train_slider
],
outputs=training_output
)
with gr.Tab("Hyperparameter Tuning"):
gr.Markdown("### Fully Automatic Hyperparameter Tuning")
gr.Markdown(
"This step will automatically tune the selected models using **three search strategies**:\n"
"- **Grid Search**\n"
"- **Random Search**\n"
"- **Bayesian Optimization** (if available)\n\n"
"The best-performing result from each strategy will be logged, and the top strategy will be shown below."
)
experiment_title_hp = gr.Textbox(label="Experiment Title", placeholder="Enter experiment title")
model_selector_hp = gr.CheckboxGroup(
label="Select Models for Auto-Tuning",
choices=["Logistic Regression", "Decision Tree", "Random Forest", "SVM", "Naive Bayes"],
value=[], interactive=True
)
run_tune_btn = gr.Button("Run Hyperparameter Tuning")
tuning_output = gr.Textbox(label="Tuning Output", lines=10, interactive=False)
run_tune_btn.click(
fn=run_hyperparameter_tuning,
inputs=[experiment_title_hp, model_selector_hp],
outputs=[tuning_output, gr.Textbox(visible=False)]
)
with gr.Tab("Dashboard"):
log_df = gr.State(pd.DataFrame())
def load_log_dataframe_dynamic():
import os, json, pandas as pd
log_path = "experiments/logs/experiment_log.jsonl"
if not os.path.exists(log_path):
return pd.DataFrame([{"Message": "No logs found. Train or tune a model."}])
with open(log_path, "r", encoding="utf-8") as f:
lines = f.readlines()
rows = []
for line in lines:
try:
row = json.loads(line)
metrics = row.get("metrics", {})
entry = {
"Experiment": row.get("experiment_title", ""),
"Timestamp": row.get("timestamp", ""),
"Model": row.get("model", ""),
"Training Time (s)": round(row.get("training_time_sec", 0), 4),
"Inference Time (ms)": round(metrics.get("inference_time", 0) * 1000, 4),
"Model Size (bytes)": row.get("model_size_bytes", ""),
"CPU (%)": row.get("system_info", {}).get("cpu_utilization", ""),
"Memory (MB)": row.get("system_info", {}).get("memory_used_mb", ""),
"CPU Name": row.get("system_info", {}).get("cpu", ""),
"Hyperparameters": json.dumps(row.get("hyperparameters", {})),
}
for k, v in metrics.items():
if k != "inference_time":
entry[k] = round(v, 4) if isinstance(v, (float, int)) else v
rows.append(entry)
except Exception as e:
continue
return pd.DataFrame(rows)
refresh_button = gr.Button("π Refresh Dashboard")
dashboard_table = gr.Dataframe(
value=load_log_dataframe_dynamic(),
interactive=True,
wrap=False,
)
refresh_button.click(
fn=load_log_dataframe_dynamic,
outputs=dashboard_table,
)
with gr.Tab("Summary"):
gr.Markdown("### π Best Models by Metric")
gr.Markdown(
"- β
Automatically finds the **best model** for each evaluation metric from all logged experiments.\n"
"- π Use the **Refresh** button to update this view after new training or tuning."
)
summary_df = gr.Dataframe(label="Top Models by Metric", interactive=False)
def refresh_summary():
import pandas as pd, os, json
log_path = "experiments/logs/experiment_log.jsonl"
if not os.path.exists(log_path):
return pd.DataFrame([{"Message": "No logs found. Train or tune a model first."}])
df = pd.read_json(log_path, lines=True)
metric_keys = [
"accuracy_test", "precision_test", "recall_test", "f1_score_test"
]
best_rows = []
for metric in metric_keys:
best = None
best_score = -float("inf")
for _, row in df.iterrows():
score = row.get("metrics", {}).get(metric)
if isinstance(score, (int, float)) and score > best_score:
best = row
best_score = score
if best is not None:
best_rows.append({
"Metric": metric,
"Best Score": round(best_score, 4),
"Model": best.get("model"),
"Experiment": best.get("experiment_title"),
"Timestamp": best.get("timestamp"),
"Hyperparameters": json.dumps(best.get("hyperparameters", {})),
})
summary_df_result = pd.DataFrame(best_rows)
if not summary_df_result.empty:
return summary_df_result
else:
return pd.DataFrame([{"Message": "No valid metrics found in logs."}])
refresh_btn = gr.Button("π Refresh")
refresh_btn.click(fn=refresh_summary, outputs=summary_df)
# Load initial data
summary_df.value = refresh_summary()
demo.launch(ssr_mode=False) |