Update app.py
Browse files
app.py
CHANGED
@@ -1,140 +1,132 @@
|
|
1 |
-
# app.py
|
2 |
import streamlit as st
|
3 |
-
from transformers import BlipProcessor, BlipForConditionalGeneration
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
6 |
-
import
|
7 |
-
import numpy as np
|
8 |
from PIL import Image
|
|
|
|
|
|
|
9 |
import tempfile
|
10 |
import os
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
page_icon="🎥",
|
16 |
-
layout="wide"
|
17 |
-
)
|
18 |
-
|
19 |
-
@st.cache_resource
|
20 |
-
def load_models():
|
21 |
-
# Load text-to-video model
|
22 |
-
pipeline = DiffusionPipeline.from_pretrained(
|
23 |
-
"cerspense/zeroscope_v2_576w",
|
24 |
-
torch_dtype=torch.float16
|
25 |
-
)
|
26 |
-
if torch.cuda.is_available():
|
27 |
-
pipeline.to("cuda")
|
28 |
-
else:
|
29 |
-
pipeline.to("cpu")
|
30 |
-
|
31 |
-
# Load image captioning model
|
32 |
-
blip = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
33 |
-
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
34 |
-
|
35 |
-
if torch.cuda.is_available():
|
36 |
-
blip.to("cuda")
|
37 |
-
else:
|
38 |
-
blip.to("cpu")
|
39 |
-
|
40 |
-
return pipeline, blip, blip_processor
|
41 |
-
|
42 |
-
def enhance_image(image):
|
43 |
-
# Convert PIL Image to numpy array
|
44 |
-
img_array = np.array(image)
|
45 |
-
|
46 |
-
# Basic enhancement: Increase contrast and brightness
|
47 |
-
enhanced = cv2.convertScaleAbs(img_array, alpha=1.2, beta=10)
|
48 |
-
|
49 |
-
return Image.fromarray(enhanced)
|
50 |
-
|
51 |
-
def get_description(image, blip, blip_processor):
|
52 |
-
# Process image for BLIP
|
53 |
-
inputs = blip_processor(image, return_tensors="pt")
|
54 |
-
|
55 |
-
if torch.cuda.is_available():
|
56 |
-
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
57 |
-
|
58 |
-
# Generate caption
|
59 |
-
with torch.no_grad():
|
60 |
-
generated_ids = blip.generate(pixel_values=inputs["pixel_values"], max_length=50)
|
61 |
-
description = blip_processor.decode(generated_ids[0], skip_special_tokens=True)
|
62 |
-
|
63 |
-
return description
|
64 |
-
|
65 |
-
def generate_video(pipeline, description):
|
66 |
-
# Generate video frames
|
67 |
-
video_frames = pipeline(
|
68 |
-
description,
|
69 |
-
num_inference_steps=30,
|
70 |
-
num_frames=16
|
71 |
-
).frames
|
72 |
-
|
73 |
-
# Create temporary directory and file path
|
74 |
-
temp_dir = tempfile.mkdtemp()
|
75 |
-
temp_path = os.path.join(temp_dir, "output.mp4")
|
76 |
-
|
77 |
-
# Convert frames to video
|
78 |
-
height, width = video_frames[0].shape[:2]
|
79 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
80 |
-
video_writer = cv2.VideoWriter(temp_path, fourcc, 8, (width, height))
|
81 |
-
|
82 |
-
for frame in video_frames:
|
83 |
-
video_writer.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
84 |
-
|
85 |
-
video_writer.release()
|
86 |
-
|
87 |
-
return temp_path
|
88 |
-
|
89 |
-
def main():
|
90 |
-
st.title("🎥 AI Video Generator")
|
91 |
-
st.write("Upload an image to generate a video based on its content!")
|
92 |
|
|
|
|
|
|
|
|
|
|
|
93 |
try:
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
96 |
|
97 |
-
#
|
98 |
-
|
|
|
99 |
|
100 |
-
if
|
101 |
-
|
102 |
-
col1, col2 = st.columns(2)
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
115 |
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
with st.spinner("Generating video... This may take a few minutes."):
|
122 |
-
video_path = generate_video(pipeline, modified_description)
|
123 |
-
st.success("Video generated successfully!")
|
124 |
-
st.video(video_path)
|
125 |
-
|
126 |
-
# Add download button
|
127 |
-
with open(video_path, 'rb') as f:
|
128 |
-
st.download_button(
|
129 |
-
label="Download Video",
|
130 |
-
data=f,
|
131 |
-
file_name="generated_video.mp4",
|
132 |
-
mime="video/mp4"
|
133 |
-
)
|
134 |
-
|
135 |
except Exception as e:
|
136 |
-
st.error(f"
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
if __name__ == "__main__":
|
140 |
main()
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
import torch
|
3 |
+
from transformers import pipeline
|
|
|
4 |
from PIL import Image
|
5 |
+
from diffusers import LTXVideoProcessor, LTXVideoPipeline
|
6 |
+
import numpy as np
|
7 |
+
from moviepy.editor import ImageSequenceClip
|
8 |
import tempfile
|
9 |
import os
|
10 |
|
11 |
+
def generate_video_from_image(image, duration_seconds=10, progress_bar=None):
|
12 |
+
"""
|
13 |
+
Generate a video from an image using LTX-Video and image captioning.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
Args:
|
16 |
+
image: PIL Image object
|
17 |
+
duration_seconds: Duration of output video in seconds
|
18 |
+
progress_bar: Streamlit progress bar object
|
19 |
+
"""
|
20 |
try:
|
21 |
+
if progress_bar:
|
22 |
+
progress_bar.progress(0.1, "Generating image caption...")
|
23 |
+
|
24 |
+
# Setup image captioning pipeline
|
25 |
+
captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
26 |
|
27 |
+
# Generate caption
|
28 |
+
caption = captioner(image)[0]['generated_text']
|
29 |
+
st.write(f"Generated caption: *{caption}*")
|
30 |
|
31 |
+
if progress_bar:
|
32 |
+
progress_bar.progress(0.3, "Loading LTX-Video model...")
|
|
|
33 |
|
34 |
+
# Initialize LTX-Video pipeline
|
35 |
+
processor = LTXVideoProcessor()
|
36 |
+
pipeline = LTXVideoPipeline.from_pretrained("Lightricks/ltx-video")
|
37 |
+
|
38 |
+
if progress_bar:
|
39 |
+
progress_bar.progress(0.4, "Processing image...")
|
40 |
+
|
41 |
+
# Process image for video generation
|
42 |
+
processed_image = processor(image).pixel_values
|
43 |
+
processed_image = torch.from_numpy(processed_image).unsqueeze(0)
|
44 |
+
|
45 |
+
if progress_bar:
|
46 |
+
progress_bar.progress(0.5, "Generating video frames...")
|
47 |
|
48 |
+
# Generate video frames
|
49 |
+
num_frames = duration_seconds * 30 # 30 FPS
|
50 |
+
video_frames = pipeline(
|
51 |
+
processed_image,
|
52 |
+
num_inference_steps=50,
|
53 |
+
num_frames=num_frames,
|
54 |
+
guidance_scale=7.5,
|
55 |
+
prompt=caption,
|
56 |
+
).videos
|
57 |
+
|
58 |
+
if progress_bar:
|
59 |
+
progress_bar.progress(0.8, "Creating final video...")
|
60 |
|
61 |
+
# Convert frames to format suitable for moviepy
|
62 |
+
frames = [np.array(frame) for frame in video_frames[0]]
|
63 |
+
|
64 |
+
# Create temporary file for video
|
65 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp_file:
|
66 |
+
output_path = tmp_file.name
|
67 |
|
68 |
+
# Create and save video
|
69 |
+
clip = ImageSequenceClip(frames, fps=30)
|
70 |
+
clip.write_videofile(output_path, codec='libx264', audio=False)
|
71 |
+
|
72 |
+
if progress_bar:
|
73 |
+
progress_bar.progress(1.0, "Video generation complete!")
|
74 |
|
75 |
+
return output_path, caption
|
76 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
except Exception as e:
|
78 |
+
st.error(f"Error generating video: {str(e)}")
|
79 |
+
return None, None
|
80 |
+
|
81 |
+
def main():
|
82 |
+
st.set_page_config(page_title="Video Generator", page_icon="🎥")
|
83 |
+
|
84 |
+
st.title("🎥 AI Video Generator")
|
85 |
+
st.write("""
|
86 |
+
Upload an image to generate a video with AI-powered motion and transitions.
|
87 |
+
The app will automatically generate a caption for your image and use it as inspiration for the video.
|
88 |
+
""")
|
89 |
+
|
90 |
+
# File uploader
|
91 |
+
uploaded_file = st.file_uploader("Choose an image", type=['png', 'jpg', 'jpeg'])
|
92 |
+
|
93 |
+
# Duration selector
|
94 |
+
duration = st.slider("Video duration (seconds)", min_value=1, max_value=30, value=10)
|
95 |
+
|
96 |
+
if uploaded_file is not None:
|
97 |
+
# Display uploaded image
|
98 |
+
image = Image.open(uploaded_file)
|
99 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
100 |
+
|
101 |
+
# Generate button
|
102 |
+
if st.button("Generate Video"):
|
103 |
+
# Create a progress bar
|
104 |
+
progress_text = "Operation in progress. Please wait..."
|
105 |
+
my_bar = st.progress(0, text=progress_text)
|
106 |
+
|
107 |
+
# Generate video
|
108 |
+
video_path, caption = generate_video_from_image(image, duration, my_bar)
|
109 |
+
|
110 |
+
if video_path and os.path.exists(video_path):
|
111 |
+
# Read the video file
|
112 |
+
with open(video_path, 'rb') as video_file:
|
113 |
+
video_bytes = video_file.read()
|
114 |
+
|
115 |
+
# Create download button
|
116 |
+
st.download_button(
|
117 |
+
label="Download Video",
|
118 |
+
data=video_bytes,
|
119 |
+
file_name="generated_video.mp4",
|
120 |
+
mime="video/mp4"
|
121 |
+
)
|
122 |
+
|
123 |
+
# Display video
|
124 |
+
st.video(video_bytes)
|
125 |
+
|
126 |
+
# Clean up temporary file
|
127 |
+
os.unlink(video_path)
|
128 |
+
else:
|
129 |
+
st.error("Failed to generate video. Please try again.")
|
130 |
|
131 |
if __name__ == "__main__":
|
132 |
main()
|