Update app.py
Browse files
app.py
CHANGED
@@ -1,72 +1,47 @@
|
|
1 |
import streamlit as st
|
2 |
-
import torch
|
3 |
from transformers import pipeline
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
import tempfile
|
7 |
import os
|
8 |
-
from
|
9 |
-
from
|
10 |
|
11 |
def generate_video_from_image(image, duration_seconds=10, progress_bar=None):
|
12 |
"""
|
13 |
-
Generate a video from an image using
|
14 |
"""
|
15 |
try:
|
16 |
if progress_bar:
|
17 |
progress_bar.progress(0.1, "Generating image caption...")
|
18 |
|
19 |
-
# Setup image captioning
|
20 |
-
|
21 |
|
22 |
# Generate caption
|
23 |
-
caption =
|
24 |
st.write(f"Generated caption: *{caption}*")
|
25 |
|
26 |
if progress_bar:
|
27 |
progress_bar.progress(0.3, "Loading Video Generation model...")
|
28 |
|
29 |
-
# Initialize
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
)
|
34 |
|
35 |
if progress_bar:
|
36 |
-
progress_bar.progress(0.
|
37 |
-
|
38 |
-
# Prepare image
|
39 |
-
if image.mode != "RGB":
|
40 |
-
image = image.convert("RGB")
|
41 |
-
image = image.resize((576, 320)) # Resize to model's expected size
|
42 |
-
|
43 |
-
if progress_bar:
|
44 |
-
progress_bar.progress(0.5, "Generating video frames...")
|
45 |
|
46 |
# Generate video
|
47 |
-
|
48 |
-
|
49 |
-
image,
|
50 |
-
num_inference_steps=50,
|
51 |
-
num_frames=num_frames,
|
52 |
-
guidance_scale=7.5,
|
53 |
-
prompt=caption,
|
54 |
-
).videos[0]
|
55 |
-
|
56 |
-
if progress_bar:
|
57 |
-
progress_bar.progress(0.8, "Creating final video...")
|
58 |
-
|
59 |
-
# Create temporary file for video
|
60 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp_file:
|
61 |
-
output_path = tmp_file.name
|
62 |
-
|
63 |
-
# Export video frames
|
64 |
-
export_to_video(video_frames, output_path, fps=8)
|
65 |
|
66 |
if progress_bar:
|
67 |
progress_bar.progress(1.0, "Video generation complete!")
|
68 |
|
69 |
-
return
|
70 |
|
71 |
except Exception as e:
|
72 |
st.error(f"Error generating video: {str(e)}")
|
@@ -81,15 +56,11 @@ def main():
|
|
81 |
The app will automatically generate a caption for your image and use it as inspiration for the video.
|
82 |
""")
|
83 |
|
84 |
-
|
85 |
-
st.warning("Note: Video generation may take several minutes depending on the duration and available computing resources.")
|
86 |
|
87 |
# File uploader
|
88 |
uploaded_file = st.file_uploader("Choose an image", type=['png', 'jpg', 'jpeg'])
|
89 |
|
90 |
-
# Duration selector (adjusted for this model's capabilities)
|
91 |
-
duration = st.slider("Video duration (seconds)", min_value=1, max_value=15, value=5)
|
92 |
-
|
93 |
if uploaded_file is not None:
|
94 |
# Display uploaded image
|
95 |
image = Image.open(uploaded_file)
|
@@ -103,7 +74,7 @@ def main():
|
|
103 |
my_bar = st.progress(0, text=progress_text)
|
104 |
|
105 |
# Generate video
|
106 |
-
video_path, caption = generate_video_from_image(image,
|
107 |
|
108 |
if video_path and os.path.exists(video_path):
|
109 |
# Read the video file
|
@@ -120,14 +91,13 @@ def main():
|
|
120 |
|
121 |
# Display video
|
122 |
st.video(video_bytes)
|
123 |
-
|
124 |
-
# Clean up temporary file
|
125 |
-
os.unlink(video_path)
|
126 |
else:
|
127 |
st.error("Failed to generate video. Please try again.")
|
128 |
|
129 |
except Exception as e:
|
130 |
st.error(f"An error occurred: {str(e)}")
|
|
|
|
|
131 |
|
132 |
if __name__ == "__main__":
|
133 |
main()
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
import tempfile
|
6 |
import os
|
7 |
+
from modelscope.pipelines import pipeline as modelscope_pipeline
|
8 |
+
from modelscope.outputs import OutputKeys
|
9 |
|
10 |
def generate_video_from_image(image, duration_seconds=10, progress_bar=None):
|
11 |
"""
|
12 |
+
Generate a video from an image using ModelScope's video generation.
|
13 |
"""
|
14 |
try:
|
15 |
if progress_bar:
|
16 |
progress_bar.progress(0.1, "Generating image caption...")
|
17 |
|
18 |
+
# Setup image captioning
|
19 |
+
caption_pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
20 |
|
21 |
# Generate caption
|
22 |
+
caption = caption_pipe(image)[0]['generated_text']
|
23 |
st.write(f"Generated caption: *{caption}*")
|
24 |
|
25 |
if progress_bar:
|
26 |
progress_bar.progress(0.3, "Loading Video Generation model...")
|
27 |
|
28 |
+
# Initialize video generation
|
29 |
+
video_pipe = modelscope_pipeline(
|
30 |
+
'text-to-video-synthesis',
|
31 |
+
model='damo/text-to-video-synthesis'
|
32 |
+
)
|
33 |
|
34 |
if progress_bar:
|
35 |
+
progress_bar.progress(0.5, "Generating video...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
# Generate video
|
38 |
+
output = video_pipe(caption)
|
39 |
+
video_path = output[OutputKeys.OUTPUT_VIDEO]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
if progress_bar:
|
42 |
progress_bar.progress(1.0, "Video generation complete!")
|
43 |
|
44 |
+
return video_path, caption
|
45 |
|
46 |
except Exception as e:
|
47 |
st.error(f"Error generating video: {str(e)}")
|
|
|
56 |
The app will automatically generate a caption for your image and use it as inspiration for the video.
|
57 |
""")
|
58 |
|
59 |
+
st.info("Note: Video generation may take several minutes.")
|
|
|
60 |
|
61 |
# File uploader
|
62 |
uploaded_file = st.file_uploader("Choose an image", type=['png', 'jpg', 'jpeg'])
|
63 |
|
|
|
|
|
|
|
64 |
if uploaded_file is not None:
|
65 |
# Display uploaded image
|
66 |
image = Image.open(uploaded_file)
|
|
|
74 |
my_bar = st.progress(0, text=progress_text)
|
75 |
|
76 |
# Generate video
|
77 |
+
video_path, caption = generate_video_from_image(image, my_bar)
|
78 |
|
79 |
if video_path and os.path.exists(video_path):
|
80 |
# Read the video file
|
|
|
91 |
|
92 |
# Display video
|
93 |
st.video(video_bytes)
|
|
|
|
|
|
|
94 |
else:
|
95 |
st.error("Failed to generate video. Please try again.")
|
96 |
|
97 |
except Exception as e:
|
98 |
st.error(f"An error occurred: {str(e)}")
|
99 |
+
st.error("Full error message for debugging:")
|
100 |
+
st.error(e)
|
101 |
|
102 |
if __name__ == "__main__":
|
103 |
main()
|