Spaces:
Sleeping
Sleeping
Add application file
Browse files- app/routes/embedding_routes.py +15 -3
- app/services/embedding_service.py +13 -5
- app/services/model_service.py +11 -3
app/routes/embedding_routes.py
CHANGED
@@ -11,7 +11,7 @@ router = APIRouter()
|
|
11 |
@router.post("/create-embeddings")
|
12 |
async def create_embeddings(file: UploadFile = File(...)):
|
13 |
"""
|
14 |
-
Create embeddings from an uploaded Excel or CSV file.
|
15 |
|
16 |
- **file**: The Excel or CSV file containing questions and answers
|
17 |
|
@@ -31,8 +31,15 @@ async def create_embeddings(file: UploadFile = File(...)):
|
|
31 |
detail="Unsupported file type. Please upload an Excel (.xlsx, .xls) or CSV (.csv) file.",
|
32 |
)
|
33 |
|
|
|
|
|
|
|
|
|
|
|
34 |
# Create a temporary file to store the uploaded file
|
35 |
-
|
|
|
|
|
36 |
try:
|
37 |
# Save the uploaded file
|
38 |
with open(temp_file_path, "wb") as buffer:
|
@@ -50,4 +57,9 @@ async def create_embeddings(file: UploadFile = File(...)):
|
|
50 |
finally:
|
51 |
# Clean up the temporary file
|
52 |
if os.path.exists(temp_file_path):
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
11 |
@router.post("/create-embeddings")
|
12 |
async def create_embeddings(file: UploadFile = File(...)):
|
13 |
"""
|
14 |
+
Create embeddings from an uploaded Excel or CSV file containing question-answer pairs.
|
15 |
|
16 |
- **file**: The Excel or CSV file containing questions and answers
|
17 |
|
|
|
31 |
detail="Unsupported file type. Please upload an Excel (.xlsx, .xls) or CSV (.csv) file.",
|
32 |
)
|
33 |
|
34 |
+
# Ensure temp directory exists
|
35 |
+
temp_dir = "/app/temp"
|
36 |
+
if not os.path.exists(temp_dir):
|
37 |
+
os.makedirs(temp_dir, exist_ok=True)
|
38 |
+
|
39 |
# Create a temporary file to store the uploaded file
|
40 |
+
safe_filename = os.path.basename(file.filename).replace(" ", "_")
|
41 |
+
temp_file_path = os.path.join(temp_dir, f"temp_{safe_filename}")
|
42 |
+
|
43 |
try:
|
44 |
# Save the uploaded file
|
45 |
with open(temp_file_path, "wb") as buffer:
|
|
|
57 |
finally:
|
58 |
# Clean up the temporary file
|
59 |
if os.path.exists(temp_file_path):
|
60 |
+
try:
|
61 |
+
os.remove(temp_file_path)
|
62 |
+
except Exception as e:
|
63 |
+
print(
|
64 |
+
f"Warning: Could not remove temporary file {temp_file_path}: {str(e)}"
|
65 |
+
)
|
app/services/embedding_service.py
CHANGED
@@ -7,8 +7,11 @@ from typing import List, Dict, Tuple, Any
|
|
7 |
|
8 |
from app.services.model_service import get_model, reload_embeddings
|
9 |
|
|
|
|
|
|
|
10 |
# Ensure data directory exists
|
11 |
-
os.makedirs(
|
12 |
|
13 |
|
14 |
def remove_prefix(text: str, prefix_pattern: str) -> str:
|
@@ -55,7 +58,8 @@ def save_raw_data(qa_list: List[Dict[str, str]]) -> None:
|
|
55 |
"""
|
56 |
Save the raw question-answer pairs to a JSON file.
|
57 |
"""
|
58 |
-
|
|
|
59 |
json.dump(qa_list, json_file, ensure_ascii=False, indent=2)
|
60 |
|
61 |
|
@@ -74,11 +78,15 @@ def create_and_save_embeddings(qa_list: List[Dict[str, str]]) -> None:
|
|
74 |
answer_embeddings = model.encode(answers, convert_to_numpy=True)
|
75 |
|
76 |
# Save embeddings as numpy arrays
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
79 |
|
80 |
# Save the original data
|
81 |
-
with open(
|
82 |
json.dump(qa_list, f, ensure_ascii=False, indent=2)
|
83 |
|
84 |
|
|
|
7 |
|
8 |
from app.services.model_service import get_model, reload_embeddings
|
9 |
|
10 |
+
# Define data directory path
|
11 |
+
DATA_DIR = "/app/data"
|
12 |
+
|
13 |
# Ensure data directory exists
|
14 |
+
os.makedirs(DATA_DIR, exist_ok=True)
|
15 |
|
16 |
|
17 |
def remove_prefix(text: str, prefix_pattern: str) -> str:
|
|
|
58 |
"""
|
59 |
Save the raw question-answer pairs to a JSON file.
|
60 |
"""
|
61 |
+
raw_path = os.path.join(DATA_DIR, "raw.json")
|
62 |
+
with open(raw_path, "w", encoding="utf-8") as json_file:
|
63 |
json.dump(qa_list, json_file, ensure_ascii=False, indent=2)
|
64 |
|
65 |
|
|
|
78 |
answer_embeddings = model.encode(answers, convert_to_numpy=True)
|
79 |
|
80 |
# Save embeddings as numpy arrays
|
81 |
+
q_emb_path = os.path.join(DATA_DIR, "question_embeddings.npy")
|
82 |
+
a_emb_path = os.path.join(DATA_DIR, "answer_embeddings.npy")
|
83 |
+
qa_data_path = os.path.join(DATA_DIR, "qa_data.json")
|
84 |
+
|
85 |
+
np.save(q_emb_path, question_embeddings)
|
86 |
+
np.save(a_emb_path, answer_embeddings)
|
87 |
|
88 |
# Save the original data
|
89 |
+
with open(qa_data_path, "w", encoding="utf-8") as f:
|
90 |
json.dump(qa_list, f, ensure_ascii=False, indent=2)
|
91 |
|
92 |
|
app/services/model_service.py
CHANGED
@@ -1,8 +1,12 @@
|
|
1 |
import json
|
2 |
import numpy as np
|
|
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
from typing import List, Dict, Tuple, Any, Optional
|
5 |
|
|
|
|
|
|
|
6 |
# Global variables to store model and data
|
7 |
_model = None
|
8 |
_question_embeddings = None
|
@@ -37,10 +41,14 @@ def load_embeddings() -> Tuple[np.ndarray, np.ndarray, List[Dict[str, str]]]:
|
|
37 |
global _question_embeddings, _answer_embeddings, _qa_data
|
38 |
|
39 |
try:
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
with open(
|
44 |
_qa_data = json.load(f)
|
45 |
|
46 |
return _question_embeddings, _answer_embeddings, _qa_data
|
|
|
1 |
import json
|
2 |
import numpy as np
|
3 |
+
import os
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
from typing import List, Dict, Tuple, Any, Optional
|
6 |
|
7 |
+
# Define data directory path
|
8 |
+
DATA_DIR = "/app/data"
|
9 |
+
|
10 |
# Global variables to store model and data
|
11 |
_model = None
|
12 |
_question_embeddings = None
|
|
|
41 |
global _question_embeddings, _answer_embeddings, _qa_data
|
42 |
|
43 |
try:
|
44 |
+
q_emb_path = os.path.join(DATA_DIR, "question_embeddings.npy")
|
45 |
+
a_emb_path = os.path.join(DATA_DIR, "answer_embeddings.npy")
|
46 |
+
qa_data_path = os.path.join(DATA_DIR, "qa_data.json")
|
47 |
+
|
48 |
+
_question_embeddings = np.load(q_emb_path)
|
49 |
+
_answer_embeddings = np.load(a_emb_path)
|
50 |
|
51 |
+
with open(qa_data_path, "r", encoding="utf-8") as f:
|
52 |
_qa_data = json.load(f)
|
53 |
|
54 |
return _question_embeddings, _answer_embeddings, _qa_data
|