File size: 8,048 Bytes
6fc2711
 
 
 
 
 
 
 
 
 
 
 
 
d6542ef
 
 
 
 
 
 
6fc2711
 
 
 
 
 
 
d6542ef
bae2d47
 
6fc2711
 
 
 
 
cc4cc4a
d6542ef
 
 
 
 
 
 
 
 
6fc2711
 
 
 
 
 
 
 
 
cc4cc4a
6fc2711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc4cc4a
 
6fc2711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc4cc4a
 
 
 
6fc2711
cc4cc4a
 
 
6fc2711
cc4cc4a
6fc2711
 
 
 
cc4cc4a
 
 
 
 
 
 
 
6fc2711
 
 
 
cc4cc4a
6fc2711
 
 
 
 
 
 
 
cc4cc4a
 
 
6fc2711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6542ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import io
import uuid
import numpy as np
from PIL import Image, ImageFilter
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from fastapi.responses import JSONResponse
import torch
from transformers import CLIPModel, CLIPProcessor
from diffusers import StableDiffusionInpaintPipeline
from sam2.build_sam import build_sam2
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
from huggingface_hub import HfApi, hf_hub_download
import uvicorn

# Configurar cach茅s antes de importar cualquier modelo
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache"
os.environ["HF_HOME"] = "/tmp/huggingface"
os.makedirs("/tmp/transformers_cache", exist_ok=True)
os.makedirs("/tmp/huggingface", exist_ok=True)

app = FastAPI()

# Etiquetas y umbral para filtrar regiones de ropa
CLOTHING_LABELS = ["a piece of clothing", "shirt", "jacket", "pants", "dress", "skirt"]
CLIP_THRESHOLD = 0.25

print("Starting app.py...")


def process_image(pil_img: Image.Image, prompt: str, neg_prompt: str, hf_repo: str = None):
    # --- Configuraci贸n de dispositivo
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # --- Cargar y normalizar embeddings de texto con CLIP
    # A帽adido from_tf=True para manejar pesos en formato TensorFlow
    clip_model = CLIPModel.from_pretrained(
        "openai/clip-vit-base-patch32", 
        from_tf=True,
        cache_dir="/tmp/transformers_cache"
    ).to(device)
    clip_processor = CLIPProcessor.from_pretrained(
        "openai/clip-vit-base-patch32",
        cache_dir="/tmp/transformers_cache"
    )
    text_inputs = clip_processor(text=CLOTHING_LABELS, return_tensors="pt", padding=True).to(device)
    with torch.no_grad():
        text_embeddings = clip_model.get_text_features(**text_inputs)
        text_embeddings = text_embeddings / text_embeddings.norm(dim=-1, keepdim=True)

    # --- Preparar imagen numpy para SAM
    np_img = np.array(pil_img)

    # --- Descargar y cargar SAM2
    cache_dir = os.path.join("/tmp", "sam2_cache")
    os.makedirs(cache_dir, exist_ok=True)
    ckpt = os.path.join(cache_dir, "sam2_hiera_large.pt")
    cfg  = os.path.join(cache_dir, "sam2_hiera_l.yaml")
    if not os.path.exists(ckpt):
        ckpt = hf_hub_download("facebook/sam2-hiera-large", "sam2_hiera_large.pt", repo_type="model", cache_dir=cache_dir)
    if not os.path.exists(cfg):
        cfg = hf_hub_download("facebook/sam2-hiera-large", "sam2_hiera_l.yaml", repo_type="model", cache_dir=cache_dir)
    sam2 = build_sam2("sam2_hiera_l", ckpt, device=device)
    mask_generator = SAM2AutomaticMaskGenerator(sam2)

    # --- Generar todas las m谩scaras
    masks = mask_generator.generate(np_img)

    # --- Filtrar m谩scaras por contenido de ropa usando CLIP
    combined = np.zeros(np_img.shape[:2], dtype=bool)
    for m in masks:
        seg = m.get("segmentation")
        if seg is None: continue
        ys, xs = np.where(seg)
        if ys.size == 0: continue
        y1, y2 = ys.min(), ys.max()
        x1, x2 = xs.min(), xs.max()
        patch = pil_img.crop((x1, y1, x2, y2))
        inputs = clip_processor(images=patch, return_tensors="pt").to(device)
        with torch.no_grad():
            img_emb = clip_model.get_image_features(**inputs)
            img_emb = img_emb / img_emb.norm(dim=-1, keepdim=True)
        sims = (img_emb @ text_embeddings.T).squeeze(0)
        if float(sims.max().cpu()) > CLIP_THRESHOLD:
            combined |= seg

    # --- Crear y procesar m谩scaras
    mask_bin = Image.fromarray((combined.astype(np.uint8)) * 255)
    mask_dilated = mask_bin.filter(ImageFilter.MaxFilter(15))
    mask_for_inpaint = mask_dilated.filter(ImageFilter.GaussianBlur(7))

    # --- Inpainting con Stable Diffusion
    pipe = StableDiffusionInpaintPipeline.from_pretrained(
        "sd-legacy/stable-diffusion-inpainting",
        revision="fp16",
        torch_dtype=torch.float16,
        cache_dir="/tmp/diffusers_cache"
    ).to(device)
    try:
        pipe.enable_xformers_memory_efficient_attention()
    except:
        pass

    if not combined.any():
        result = pil_img.copy()
    else:
        result = pipe(
            prompt=prompt,
            negative_prompt=neg_prompt,
            image=pil_img,
            mask_image=mask_for_inpaint
        ).images[0]

    # --- Crear visualizaci贸n de segmentaciones SAM
    viz = np.array(pil_img).astype(np.float32)
    rnd = np.random.RandomState(42)
    for m in masks:
        seg = m.get("segmentation")
        if seg is None: continue
        color = rnd.randint(0, 256, size=3, dtype=np.uint8)
        ys, xs = np.where(seg)
        viz[ys, xs] = viz[ys, xs] * 0.5 + color * 0.5
    seg_viz = Image.fromarray(viz.astype(np.uint8))

    # --- Subida a HF Hub (datasets)
    token = os.getenv("HF_TOKEN")
    if token is None:
        raise RuntimeError("HF_TOKEN no definido en variables de entorno")
    api = HfApi()
    if hf_repo is None:
        user = api.whoami(token=token)["name"]
        hf_repo = f"{user}/sam2-inpaint-outputs"
    api.create_repo(repo_id=hf_repo, repo_type="dataset", token=token, exist_ok=True)

    uid = uuid.uuid4().hex[:8]
    # Usa directorio temporal para archivos temporales
    temp_dir = "/tmp/sam2_outputs"
    os.makedirs(temp_dir, exist_ok=True)
    
    names = {
        "seg": os.path.join(temp_dir, f"sam_seg_{uid}.png"),
        "mask": os.path.join(temp_dir, f"mask_{uid}.png"),
        "out": os.path.join(temp_dir, f"inpaint_{uid}.png")
    }
    
    # Guardar temporales
    seg_viz.save(names["seg"])
    mask_bin.save(names["mask"])
    result.save(names["out"])
    
    # Nombres para URLs
    url_names = {
        "seg": f"sam_seg_{uid}.png",
        "mask": f"mask_{uid}.png",
        "out": f"inpaint_{uid}.png"
    }
    
    # Subir
    for key, fname in names.items():
        api.upload_file(
            path_or_fileobj=fname,
            path_in_repo=url_names[key],
            repo_id=hf_repo,
            repo_type="dataset",
            token=token
        )
        os.remove(fname)

    base = f"https://huggingface.co./datasets/{hf_repo}/resolve/main"
    return (
        f"{base}/{url_names['seg']}",
        f"{base}/{url_names['mask']}",
        f"{base}/{url_names['out']}"
    )


@app.post("/inpaint/")
async def inpaint(
    file: UploadFile = File(...),
    prompt: str = Form(...),
    neg_prompt: str = Form("old clothes, residue, artifacts"),
    hf_repo: str = Form(None)
):
    # Leer imagen subida
    try:
        data = await file.read()
        img = Image.open(io.BytesIO(data)).convert("RGB")
    except Exception:
        raise HTTPException(status_code=400, detail="Imagen no v谩lida")
    # Procesar
    try:
        seg_url, mask_url, out_url = process_image(img, prompt, neg_prompt, hf_repo)
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))
    # Responder JSON
    return JSONResponse({
        "sam_segmentation": seg_url,
        "clothing_mask":    mask_url,
        "inpainted":        out_url
    })


# Agregar una funci贸n main para ejecutar directamente
if __name__ == "__main__":
    # Precargar modelos para verificar que funcionen antes de iniciar el servidor
    print("Preloading CLIP model...")
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    try:
        # Usar from_tf=True para arreglar la carga del modelo
        clip_model = CLIPModel.from_pretrained(
            "openai/clip-vit-base-patch32", 
            from_tf=True,
            cache_dir="/tmp/transformers_cache"
        ).to(device)
        clip_processor = CLIPProcessor.from_pretrained(
            "openai/clip-vit-base-patch32",
            cache_dir="/tmp/transformers_cache"
        )
        print("CLIP model loaded successfully!")
    except Exception as e:
        print(f"Error preloading CLIP model: {e}")
        # No salir - dejar que falle en tiempo de ejecuci贸n si es necesario
    
    # Ejecutar la aplicaci贸n FastAPI con uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)