Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,19 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import asyncio
|
4 |
import logging
|
5 |
-
import threading
|
6 |
import queue
|
7 |
-
import gradio as gr
|
8 |
import httpx
|
9 |
-
from
|
10 |
|
11 |
-
|
12 |
-
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
and returns the generated response.
|
19 |
-
"""
|
20 |
-
# Use the provided API key or fall back to the environment variable
|
21 |
-
if api_key is None:
|
22 |
-
api_key = os.getenv("OPENAI_API_KEY")
|
23 |
-
url = "https://api.openai.com/v1/chat/completions"
|
24 |
-
headers = {
|
25 |
-
"Authorization": f"Bearer {api_key}",
|
26 |
-
"Content-Type": "application/json"
|
27 |
-
}
|
28 |
-
# Override the model value to always be "gpt-4o-mini"
|
29 |
-
payload = {
|
30 |
-
"model": "gpt-4o-mini",
|
31 |
-
"messages": [{"role": "user", "content": prompt}],
|
32 |
-
}
|
33 |
-
async with httpx.AsyncClient(timeout=httpx.Timeout(300.0)) as client:
|
34 |
-
response = await client.post(url, headers=headers, json=payload)
|
35 |
-
response.raise_for_status()
|
36 |
-
response_json = response.json()
|
37 |
-
return response_json["choices"][0]["message"]["content"]
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
async def optimize_prompt(self, user_prompt: str, api_key: str) -> str:
|
42 |
-
"""
|
43 |
-
Optimizes the user's initial prompt according to the following instructions:
|
44 |
-
>>> Given the user's initial prompt below the ### characters please enhance it.
|
45 |
-
1. Start with clear, precise instructions placed at the beginning of the prompt.
|
46 |
-
2. Include specific details about the desired context, outcome, length, format, and style.
|
47 |
-
3. Provide examples of the desired output format, if possible.
|
48 |
-
4. Use appropriate leading words or phrases to guide the desired output, especially if code generation is involved.
|
49 |
-
5. Avoid any vague or imprecise language.
|
50 |
-
6. Rather than only stating what not to do, provide guidance on what should be done instead.
|
51 |
-
Remember to ensure the revised prompt remains true to the user's original intent. <<<
|
52 |
-
###User initial prompt below ###
|
53 |
-
"""
|
54 |
system_prompt = (
|
55 |
"Given the user's initial prompt below the ### characters please enhance it. "
|
56 |
"1. Start with clear, precise instructions placed at the beginning of the prompt. "
|
@@ -60,210 +23,155 @@ class PromptOptimizerAgent:
|
|
60 |
"5. Avoid any vague or imprecise language. "
|
61 |
"6. Rather than only stating what not to do, provide guidance on what should be done instead. "
|
62 |
"Remember to ensure the revised prompt remains true to the user's original intent. "
|
63 |
-
|
64 |
)
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
async def
|
74 |
-
""
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
"a code reviewer agent
|
81 |
-
|
82 |
-
plan = await call_model(prompt, api_key=api_key)
|
83 |
-
return plan
|
84 |
-
|
85 |
-
class CoderAgent:
|
86 |
-
async def generate_code(self, instructions: str, api_key: str) -> str:
|
87 |
-
"""
|
88 |
-
Generates code based on the given instructions.
|
89 |
-
"""
|
90 |
-
prompt = (
|
91 |
-
"You are a coder agent. Based on the following instructions, generate the requested code. "
|
92 |
-
"Only output the generated code, never any explanations or any other information besides the actual code!\n"
|
93 |
-
f"{instructions}\n"
|
94 |
)
|
95 |
-
|
96 |
-
return code
|
97 |
-
|
98 |
-
class CodeReviewerAgent:
|
99 |
-
async def review_code(self, code: str, task: str, api_key: str) -> str:
|
100 |
-
"""
|
101 |
-
Reviews the provided code to check if it meets the task specifications.
|
102 |
-
NEVER generate any code yourself! Respond only with feedback or with 'APPROVE' if everything is correct.
|
103 |
-
"""
|
104 |
-
prompt = (
|
105 |
-
"You are a code reviewing agent highly skilled in evaluating code quality. "
|
106 |
-
"Review the provided code and check if it meets the task specifications and properly addresses any provided feedback. "
|
107 |
-
"NEVER generate any code yourself! Respond only with feedback or with 'APPROVE' if everything is correct. "
|
108 |
-
"Do not mention 'APPROVE' before actually approving! Do not request documentation or user guides:\n"
|
109 |
-
f"Task: {task}\n"
|
110 |
-
f"Code:\n{code}\n\n"
|
111 |
-
)
|
112 |
-
review = await call_model(prompt, api_key=api_key)
|
113 |
-
return review
|
114 |
-
|
115 |
-
class DocumentationAgent:
|
116 |
-
async def generate_documentation(self, code: str, api_key: str) -> str:
|
117 |
-
"""
|
118 |
-
Generates clear and concise documentation for the approved code,
|
119 |
-
including a brief and concise --help message.
|
120 |
-
"""
|
121 |
-
prompt = (
|
122 |
-
"You are a documentation agent. Generate a brief, clear and concise documentation for the following approved code. "
|
123 |
-
"Keep it short and compact, focusing on the main elements, do not include unnecessary extras that limit readability. "
|
124 |
-
"Additionally, generate a brief and concise --help message for the code:\n"
|
125 |
-
f"{code}\n"
|
126 |
-
"Briefly explain what the code does and how it works. Make sure to be clear and concise, do not include unnecessary extras that limit readability."
|
127 |
-
)
|
128 |
-
documentation = await call_model(prompt, api_key=api_key)
|
129 |
-
return documentation
|
130 |
-
|
131 |
-
# -------------------- Multi-Agent Conversation --------------------
|
132 |
-
async def multi_agent_conversation(task_message: str, log_queue: queue.Queue, api_key: str) -> None:
|
133 |
-
"""
|
134 |
-
Conducts a multi-agent conversation where each agent's response is generated via the external model API.
|
135 |
-
The conversation is logged to the provided queue.
|
136 |
-
"""
|
137 |
-
conversation: List[Dict[str, str]] = [] # List to store each agent's message
|
138 |
-
|
139 |
-
# Step 0: Use Prompt Optimizer to enhance the user's initial prompt.
|
140 |
-
log_queue.put("[Prompt Optimizer]: Received initial task. Optimizing prompt...")
|
141 |
-
prompt_optimizer = PromptOptimizerAgent()
|
142 |
-
optimized_task = await prompt_optimizer.optimize_prompt(task_message, api_key=api_key)
|
143 |
-
conversation.append({"agent": "Prompt Optimizer", "message": f"Optimized Task:\n{optimized_task}"})
|
144 |
-
log_queue.put(f"[Prompt Optimizer]: Optimized task prompt:\n{optimized_task}")
|
145 |
-
|
146 |
-
# Step 1: Orchestrator generates a plan based on the optimized task.
|
147 |
-
log_queue.put("[Orchestrator]: Received optimized task. Generating plan...")
|
148 |
-
orchestrator = OrchestratorAgent(log_queue)
|
149 |
-
plan = await orchestrator.generate_plan(optimized_task, api_key=api_key)
|
150 |
-
conversation.append({"agent": "Orchestrator", "message": f"Plan:\n{plan}"})
|
151 |
-
log_queue.put(f"[Orchestrator]: Plan generated:\n{plan}")
|
152 |
-
|
153 |
-
# Step 2: Coder generates code based on the plan.
|
154 |
-
coder = CoderAgent()
|
155 |
-
coder_instructions = f"Implement the task as described in the following plan:\n{plan}"
|
156 |
-
log_queue.put("[Coder]: Received coding task from the Orchestrator.")
|
157 |
-
code = await coder.generate_code(coder_instructions, api_key=api_key)
|
158 |
-
conversation.append({"agent": "Coder", "message": f"Code:\n{code}"})
|
159 |
-
log_queue.put(f"[Coder]: Code generated:\n{code}")
|
160 |
-
|
161 |
-
# Step 3: Code Reviewer reviews the generated code.
|
162 |
-
reviewer = CodeReviewerAgent()
|
163 |
-
approval_keyword = "approve"
|
164 |
-
revision_iteration = 0
|
165 |
-
while True:
|
166 |
-
if revision_iteration == 0:
|
167 |
-
log_queue.put("[Code Reviewer]: Starting review of the generated code...")
|
168 |
-
else:
|
169 |
-
log_queue.put(f"[Code Reviewer]: Reviewing the revised code (Iteration {revision_iteration})...")
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
179 |
|
180 |
-
# If not approved, increment the revision count.
|
181 |
-
revision_iteration += 1
|
182 |
-
|
183 |
-
# Kill-switch: After 5 generations without approval, shut down.
|
184 |
-
if revision_iteration >= 5:
|
185 |
-
log_queue.put("Unable to solve your task to full satisfaction :(")
|
186 |
-
sys.exit("Unable to solve your task to full satisfaction :(")
|
187 |
-
|
188 |
-
# If under the limit, instruct the coder to revise the code.
|
189 |
-
log_queue.put(f"[Orchestrator]: Code not approved. Instructing coder to revise the code (Iteration {revision_iteration}).")
|
190 |
-
update_instructions = f"Please revise the code according to the following feedback. Feedback: {review}"
|
191 |
-
revised_code = await coder.generate_code(update_instructions, api_key=api_key)
|
192 |
-
conversation.append({"agent": "Coder", "message": f"Revised Code (Iteration {revision_iteration}):\n{revised_code}"})
|
193 |
-
log_queue.put(f"[Coder]: Revised code submitted (Iteration {revision_iteration}):\n{revised_code}")
|
194 |
-
code = revised_code # Update the code for the next review iteration
|
195 |
-
|
196 |
-
# Step 4: Documentation Agent generates documentation for the approved code.
|
197 |
-
doc_agent = DocumentationAgent()
|
198 |
-
log_queue.put("[Documentation Agent]: Generating documentation for the approved code.")
|
199 |
-
documentation = await doc_agent.generate_documentation(code, api_key=api_key)
|
200 |
-
conversation.append({"agent": "Documentation Agent", "message": f"Documentation:\n{documentation}"})
|
201 |
-
log_queue.put(f"[Documentation Agent]: Documentation generated:\n{documentation}")
|
202 |
-
|
203 |
-
log_queue.put("Multi-agent conversation complete.")
|
204 |
-
log_queue.put(("result", conversation))
|
205 |
-
|
206 |
-
# -------------------- Process Generator for Streaming --------------------
|
207 |
-
def process_conversation_generator(task_message: str, api_key: str) -> Generator[str, None, None]:
|
208 |
-
"""
|
209 |
-
Wraps the asynchronous multi-agent conversation and yields log messages as they are generated.
|
210 |
-
"""
|
211 |
-
log_q: queue.Queue = queue.Queue()
|
212 |
-
|
213 |
-
def run_conversation() -> None:
|
214 |
-
asyncio.run(multi_agent_conversation(task_message, log_q, api_key))
|
215 |
-
|
216 |
-
thread = threading.Thread(target=run_conversation)
|
217 |
-
thread.start()
|
218 |
-
|
219 |
-
final_result = None
|
220 |
-
# Yield log messages as long as the thread is running or the queue is not empty.
|
221 |
-
while thread.is_alive() or not log_q.empty():
|
222 |
-
try:
|
223 |
msg = log_q.get(timeout=0.1)
|
224 |
if isinstance(msg, tuple) and msg[0] == "result":
|
225 |
final_result = msg[1]
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
-
|
241 |
-
|
242 |
-
"""
|
243 |
-
Chat function for Gradio.
|
244 |
-
The user's message is interpreted as the task description.
|
245 |
-
An optional OpenAI API key can be provided via the additional input; if not provided, the environment variable is used.
|
246 |
-
This function streams the multi-agent conversation log messages.
|
247 |
-
"""
|
248 |
-
if not openai_api_key:
|
249 |
-
openai_api_key = os.getenv("OPENAI_API_KEY")
|
250 |
-
yield from process_conversation_generator(message, openai_api_key)
|
251 |
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
if __name__ == "__main__":
|
269 |
-
iface.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from typing import Generator, Any
|
|
|
3 |
import logging
|
|
|
4 |
import queue
|
|
|
5 |
import httpx
|
6 |
+
from gradio import ChatInterface, gr
|
7 |
|
8 |
+
logger = logging.getLogger(__name__)
|
|
|
9 |
|
10 |
+
class Agent(ABC):
|
11 |
+
@abstractmethod
|
12 |
+
async def generate_response(self, prompt: str, api_key: str) -> str:
|
13 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
class PromptOptimizerAgent(Agent):
|
16 |
+
async def generate_response(self, prompt: str, api_key: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
system_prompt = (
|
18 |
"Given the user's initial prompt below the ### characters please enhance it. "
|
19 |
"1. Start with clear, precise instructions placed at the beginning of the prompt. "
|
|
|
23 |
"5. Avoid any vague or imprecise language. "
|
24 |
"6. Rather than only stating what not to do, provide guidance on what should be done instead. "
|
25 |
"Remember to ensure the revised prompt remains true to the user's original intent. "
|
26 |
+
###User initial prompt###
|
27 |
)
|
28 |
+
return await call_openai(system_prompt, api_key)
|
29 |
+
|
30 |
+
class OrchestratorAgent(Agent):
|
31 |
+
async def generate_response(self, task_message: str, api_key: str) -> str:
|
32 |
+
plan = f"You are an orchestrator agent. The user has provided the task: '{task_message}'. Generate a detailed, step-by-step plan for completing this task by coordinating a coder agent, a code reviewer agent, and a documentation agent. List the steps as bullet points."
|
33 |
+
return await call_openai(plan, api_key)
|
34 |
+
|
35 |
+
class CoderAgent(Agent):
|
36 |
+
async def generate_response(self, instructions: str, api_key: str) -> str:
|
37 |
+
prompt = f"Implement the task as described in the following plan:\n{instructions}"
|
38 |
+
return await call_openai(prompt, api_key)
|
39 |
+
|
40 |
+
class CodeReviewerAgent(Agent):
|
41 |
+
async def generate_response(self, code: str, task: str, api_key: str) -> str:
|
42 |
+
feedback = await call_openai(
|
43 |
+
f"You are a code reviewer agent. Review the provided code: '{code}' and check if it meets the task specifications.",
|
44 |
+
api_key=api_key
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
)
|
46 |
+
return feedback
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
class DocumentationAgent(Agent):
|
49 |
+
async def generate_response(self, code: str, api_key: str) -> str:
|
50 |
+
prompt = f"You are a documentation agent. Generate a brief documentation for the code:\nCode:\n{code}"
|
51 |
+
return await call_openai(prompt, api_key)
|
52 |
|
53 |
+
async def process_conversation_generator(conversation: list, log_q: queue.Queue, api_key: str) -> Generator[str, None, None]:
|
54 |
+
try:
|
55 |
+
while True:
|
56 |
+
if not conversation or not log_q.get(timeout=0.1):
|
57 |
+
continue
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
msg = log_q.get(timeout=0.1)
|
60 |
if isinstance(msg, tuple) and msg[0] == "result":
|
61 |
final_result = msg[1]
|
62 |
+
break
|
63 |
+
|
64 |
+
yield msg
|
65 |
+
except asyncio.CancelledError:
|
66 |
+
pass
|
67 |
+
finally:
|
68 |
+
if log_q.empty():
|
69 |
+
log_q.put("Final conversation complete.")
|
70 |
+
|
71 |
+
async def multi_agent_conversation(
|
72 |
+
task_message: str,
|
73 |
+
log_q: queue.Queue,
|
74 |
+
api_key: str,
|
75 |
+
additional_inputs=None
|
76 |
+
) -> None:
|
77 |
+
if additional_inputs is None:
|
78 |
+
additional_inputs = [gr.Textbox(label="OpenAI API Key (optional)")]
|
79 |
+
|
80 |
+
agents = [
|
81 |
+
PromptOptimizerAgent(),
|
82 |
+
OrchestratorAgent(),
|
83 |
+
CoderAgent(),
|
84 |
+
CodeReviewerAgent(),
|
85 |
+
DocumentationAgent()
|
86 |
+
]
|
87 |
+
|
88 |
+
log_queue = queue.Queue()
|
89 |
+
run_conversation = None
|
90 |
+
|
91 |
+
async def run_conversation_thread() -> None:
|
92 |
+
nonlocal run_conversation
|
93 |
+
try:
|
94 |
+
if run_conversation is not None:
|
95 |
+
await run_conversation
|
96 |
+
except asyncio.CancelledError:
|
97 |
+
pass
|
98 |
|
99 |
+
thread = asyncio.to_thread(run_conversation_thread)
|
100 |
+
thread.start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
try:
|
103 |
+
conversation = []
|
104 |
+
log_q.put("[Prompt Optimizer]: Received initial task. Optimizing prompt...")
|
105 |
+
|
106 |
+
# Step 0: Use Prompt Optimizer
|
107 |
+
optimized_task = await agents[0].generate_response(task_message, api_key)
|
108 |
+
conversation.append({"agent": "Prompt Optimizer", "message": f"Optimized Task:\n{optimized_task}"})
|
109 |
+
log_q.put(f"[Prompt Optimizer]: Optimized Task:\n{optimized_task}")
|
110 |
+
|
111 |
+
# Step 1: Generate Plan
|
112 |
+
plan = await agents[1].generate_response(optimized_task, api_key)
|
113 |
+
conversation.append({"agent": "Orchestrator", "message": f"Plan:\n{plan}"})
|
114 |
+
log_q.put(f"[Orchestrator]: Plan generated:\n{plan}")
|
115 |
+
|
116 |
+
# Step 2: Generate Code
|
117 |
+
code = await agents[2].generate_response(plan, api_key)
|
118 |
+
conversation.append({"agent": "Coder", "message": f"Code:\n{code}"})
|
119 |
+
log_q.put(f"[Coder]: Code generated:\n{code}")
|
120 |
+
|
121 |
+
# Step 3: Code Review
|
122 |
+
code_review = None
|
123 |
+
iteration = 0
|
124 |
+
while True:
|
125 |
+
if iteration >= 5:
|
126 |
+
log_q.put("[Code Reviewer]: Code not approved after 5 iterations: terminating.")
|
127 |
+
break
|
128 |
+
|
129 |
+
code_review = await agents[3].generate_response(code, plan, api_key)
|
130 |
+
revised_code = await agents[2].generate_response(
|
131 |
+
f"Please revise the code according to the following feedback: {code_review}",
|
132 |
+
api_key
|
133 |
+
)
|
134 |
+
code = revised_code
|
135 |
+
iteration += 1
|
136 |
+
|
137 |
+
if code == revised_code:
|
138 |
+
break
|
139 |
+
|
140 |
+
log_q.put(f"[Code Reviewer]: Feedback received:\n{code_review}")
|
141 |
+
log_q.put(f"[Code Reviewer]: Revised code:\n{revised_code}")
|
142 |
+
|
143 |
+
# Step 4: Documentation
|
144 |
+
doc = await agents[4].generate_response(code, api_key)
|
145 |
+
conversation.append({"agent": "Documentation Agent", "message": f"Documentation:\n{doc}"})
|
146 |
+
log_q.put(f"[Documentation Agent]: Documentation generated:\n{doc}")
|
147 |
+
|
148 |
+
except Exception as e:
|
149 |
+
log_q.put(f"[All Agents]: An error occurred: {str(e)}")
|
150 |
+
logger.error(f"Error in multi_agent_conversation: {str(e)}")
|
151 |
+
|
152 |
+
finally:
|
153 |
+
thread.join()
|
154 |
+
|
155 |
+
async def multi_agent_conversation_wrapper(task_message: str, api_key: str) -> None:
|
156 |
+
await multi_agent_conversation(
|
157 |
+
task_message,
|
158 |
+
log_q=queue.Queue(),
|
159 |
+
api_key=api_key,
|
160 |
+
additional_inputs=[gr.Textbox(label="OpenAI API Key (optional)") if api_key is None else None]
|
161 |
+
)
|
162 |
|
163 |
if __name__ == "__main__":
|
164 |
+
iface = gr.ChatInterface(
|
165 |
+
fn=multi_agent_conversation_wrapper,
|
166 |
+
additional_inputs=[gr.Textbox(label="OpenAI API Key (optional)")],
|
167 |
+
type="messages",
|
168 |
+
title="Actual Multi-Agent Conversation Chatbot",
|
169 |
+
description="""
|
170 |
+
- Collaborative workflow between Prompt Enhancer, Orchestrator, Coder, Code-Reviewer and Documentation Agent agents.
|
171 |
+
- Enter a task description to observe the iterative workflow between the agents.
|
172 |
+
- NOTE: The kill-switch mechanism will terminate after five code rejection iterations to prevent endless loops.
|
173 |
+
- NOTE3: You can input your OPENAI_API_KEY at the bottom of the page for this to work!
|
174 |
+
""",
|
175 |
+
)
|
176 |
+
|
177 |
+
iface.launch()
|