File size: 19,785 Bytes
02d640a
 
b07e47b
02d640a
b07e47b
02d640a
b07e47b
c64b7d2
3c1c644
763898d
b07e47b
ffea40d
c64b7d2
b07e47b
7b71415
3c1c644
ffea40d
 
69af1c5
c64b7d2
ffea40d
 
 
763898d
ffea40d
c64b7d2
 
 
 
7b71415
 
 
 
 
c64b7d2
7b71415
 
 
763898d
 
7b71415
 
763898d
7b71415
 
 
 
 
763898d
7b71415
c64b7d2
7b71415
7eced9b
 
 
f8ccbbf
7eced9b
 
 
 
 
 
 
 
 
 
3c1c644
 
 
 
 
 
 
 
 
4f8a105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66bf159
7eced9b
4f8a105
 
 
 
ffea40d
 
4f8a105
763898d
 
 
 
4f8a105
69af1c5
4f8a105
 
 
ffea40d
 
c64b7d2
ffea40d
763898d
69af1c5
ffea40d
763898d
 
 
 
c64b7d2
763898d
 
 
 
 
 
 
 
 
 
 
f8ccbbf
763898d
 
f8ccbbf
c64b7d2
 
763898d
 
c64b7d2
f8ccbbf
763898d
f8ccbbf
c64b7d2
763898d
 
c64b7d2
763898d
ffea40d
 
4f8a105
ffea40d
4f8a105
763898d
4f8a105
ffea40d
69af1c5
4f8a105
 
 
ffea40d
 
4f8a105
ffea40d
763898d
 
4f8a105
b07e47b
69af1c5
4f8a105
 
763898d
 
 
 
 
 
 
 
 
4f8a105
ffea40d
69af1c5
4f8a105
69af1c5
763898d
 
4f8a105
69af1c5
 
4f8a105
 
 
69af1c5
4f8a105
69af1c5
763898d
 
4f8a105
69af1c5
642e9cc
4f8a105
 
 
69af1c5
ffea40d
4f8a105
ffea40d
763898d
4f8a105
b07e47b
69af1c5
4f8a105
 
 
 
763898d
4f8a105
763898d
4f8a105
763898d
4f8a105
 
 
763898d
4f8a105
 
 
 
 
 
 
f8ccbbf
4f8a105
c64b7d2
4f8a105
c64b7d2
4f8a105
c64b7d2
4f8a105
c64b7d2
4f8a105
 
c64b7d2
4f8a105
c64b7d2
4f8a105
c64b7d2
4f8a105
c64b7d2
f8ccbbf
4f8a105
763898d
 
4f8a105
 
 
 
 
 
3c1c644
 
 
4f8a105
 
 
763898d
4f8a105
 
 
c64b7d2
4f8a105
763898d
 
 
4f8a105
763898d
4f8a105
763898d
4f8a105
 
 
763898d
4f8a105
763898d
4f8a105
763898d
 
 
 
 
66bf159
 
 
 
763898d
66bf159
 
4f8a105
763898d
 
f8ccbbf
763898d
4f8a105
ffea40d
c64b7d2
763898d
 
f8ccbbf
ffea40d
66bf159
3c1c644
ffea40d
69c7141
479edc1
 
 
 
 
 
 
ffea40d
479edc1
69c7141
 
 
 
 
 
 
ffea40d
763898d
479edc1
 
69c7141
4b2e1da
c64b7d2
 
ffea40d
 
69af1c5
3c1c644
69af1c5
763898d
 
 
 
b07e47b
3c1c644
 
 
 
 
 
 
 
 
c64b7d2
74002ea
 
 
 
 
 
 
 
 
c2c827a
 
 
 
 
 
 
 
74002ea
c2c827a
e9d8102
c64b7d2
c2c827a
c64b7d2
9a33663
 
 
 
c2c827a
3c1c644
 
c2c827a
c64b7d2
 
 
 
 
c2c827a
 
3c1c644
 
c2c827a
3c1c644
 
 
c2c827a
69af1c5
b07e47b
9a33663
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import os
import asyncio
import logging
import threading
import queue
import gradio as gr
import httpx
import time
import tempfile
from typing import Generator, Any, Dict, List, Optional

# -------------------- Configuration --------------------
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")

# -------------------- External Model Call (with Caching and Retry) --------------------
async def call_model(prompt: str, model: str = "gpt-4o", api_key: str = None, max_retries: int = 3) -> str:
    if api_key is None:
        api_key = os.getenv("OPENAI_API_KEY")
        if api_key is None:
            raise ValueError("OpenAI API key not provided.")
    url = "https://api.openai.com/v1/chat/completions"
    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json",
    }
    payload = {
        "model": model,
        "messages": [{"role": "user", "content": prompt}],
    }
    for attempt in range(max_retries):
        try:
            async with httpx.AsyncClient(timeout=httpx.Timeout(300.0)) as client:
                response = await client.post(url, headers=headers, json=payload)
                response.raise_for_status()
                response_json = response.json()
                return response_json["choices"][0]["message"]["content"]
        except httpx.HTTPStatusError as e:
            logging.error(f"HTTP error (attempt {attempt + 1}/{max_retries}): {e}")
            if e.response.status_code in (502, 503, 504):
                await asyncio.sleep(2 ** attempt)
                continue
            else:
                raise
        except httpx.RequestError as e:
            logging.error(f"Request error (attempt {attempt + 1}/{max_retries}): {e}")
            await asyncio.sleep(2 ** attempt)
            continue
        except Exception as e:
            logging.error(f"Unexpected error (attempt {attempt+1}/{max_retries}): {e}")
            raise
    raise Exception(f"Failed to get response after {max_retries} attempts.")

# -------------------- Conversation History Conversion --------------------
def convert_history(history: List[Dict[str, str]]) -> List[Dict[str, str]]:
    """
    Convert our internal conversation history (with 'agent' and 'message')
    into the Gradio messages format (with 'role' and 'content').
    """
    converted = []
    for entry in history:
        if entry["agent"].lower() == "user":
            converted.append({"role": "user", "content": entry["message"]})
        else:
            converted.append({"role": "assistant", "content": f'{entry["agent"]}: {entry["message"]}'})
    return converted

def conversation_to_text(history: List[Dict[str, str]]) -> str:
    """
    Convert the conversation history to a plain-text log.
    """
    lines = []
    for entry in history:
        lines.append(f"{entry['agent']}: {entry['message']}")
    return "\n".join(lines)

# -------------------- Shared Context --------------------
class Context:
    def __init__(self, original_task: str, optimized_task: Optional[str] = None,
                 plan: Optional[str] = None, code: Optional[str] = None,
                 review_comments: Optional[List[Dict[str, str]]] = None,
                 test_cases: Optional[str] = None, test_results: Optional[str] = None,
                 documentation: Optional[str] = None, conversation_history: Optional[List[Dict[str, str]]] = None):
        self.original_task = original_task
        self.optimized_task = optimized_task
        self.plan = plan
        self.code = code
        self.review_comments = review_comments or []
        self.test_cases = test_cases
        self.test_results = test_results
        self.documentation = documentation
        # Initialize with the user's task.
        self.conversation_history = conversation_history or [{"agent": "User", "message": original_task}]

    def add_conversation_entry(self, agent_name: str, message: str):
        self.conversation_history.append({"agent": agent_name, "message": message})

# -------------------- Agent Classes --------------------
class PromptOptimizerAgent:
    async def optimize_prompt(self, context: Context, api_key: str) -> Context:
        system_prompt = (
            "Improve the prompt. Be clear, specific, and complete. "
            "Keep original intent. Return ONLY the revised prompt."
        )
        full_prompt = f"{system_prompt}\n\nUser's prompt:\n{context.original_task}"
        optimized = await call_model(full_prompt, model="gpt-4o", api_key=api_key)
        context.optimized_task = optimized
        context.add_conversation_entry("Prompt Optimizer", f"Optimized Task:\n{optimized}")
        return context

class OrchestratorAgent:
    def __init__(self, log_queue: queue.Queue, human_event: threading.Event, human_input_queue: queue.Queue):
        self.log_queue = log_queue
        self.human_event = human_event
        self.human_input_queue = human_input_queue

    async def generate_plan(self, context: Context, api_key: str) -> Context:
        while True:
            if context.plan:
                prompt = (
                    f"You are a planner. Revise/complete the plan for '{context.original_task}'. "
                    "If unsure, output 'REQUEST_HUMAN_FEEDBACK\\n[Question]'"
                )
            else:
                prompt = (
                    f"You are a planner. Create a plan for: '{context.optimized_task}'. "
                    "Break down the task and assign sub-tasks to: Coder, Code Reviewer, Quality Assurance Tester, and Documentation Agent. "
                    "Include review/revision steps, error handling, and documentation instructions.\n\n"
                    "If unsure, output 'REQUEST_HUMAN_FEEDBACK\\n[Question]'"
                )
            plan = await call_model(prompt, model="gpt-4o", api_key=api_key)
            context.add_conversation_entry("Orchestrator", f"Plan:\n{plan}")
            self.log_queue.put(("update", context.conversation_history))
            if "REQUEST_HUMAN_FEEDBACK" in plan:
                question = plan.split("REQUEST_HUMAN_FEEDBACK\n", 1)[1].strip()
                self.log_queue.put(("[Orchestrator]", f"Requesting human feedback... Question: {question}"))
                feedback_context = (
                    f"Task: {context.optimized_task}\nCurrent Plan: {context.plan or 'None'}\nQuestion: {question}"
                )
                self.human_event.set()
                self.human_input_queue.put(feedback_context)
                human_response = self.human_input_queue.get()  # Blocking waiting for human response
                self.human_event.clear()
                self.log_queue.put(("[Orchestrator]", f"Received human feedback: {human_response}"))
                context.plan = (context.plan + "\n" + human_response) if context.plan else human_response
            else:
                context.plan = plan
                break
        return context

class CoderAgent:
    async def generate_code(self, context: Context, api_key: str, model: str = "gpt-4o") -> Context:
        prompt = (
            "You are a coding agent. Output ONLY the code. "
            "Adhere to best practices and include error handling.\n\n"
            f"Instructions:\n{context.plan}"
        )
        code = await call_model(prompt, model=model, api_key=api_key)
        context.code = code
        context.add_conversation_entry("Coder", f"Code:\n{code}")
        return context

class CodeReviewerAgent:
    async def review_code(self, context: Context, api_key: str) -> Context:
        prompt = (
            "You are a code reviewer. Provide CONCISE feedback focusing on correctness, efficiency, readability, error handling, and security. "
            "If the code is acceptable, respond with ONLY 'APPROVE'. Do NOT generate code.\n\n"
            f"Task: {context.optimized_task}\n\nCode:\n{context.code}"
        )
        review = await call_model(prompt, model="gpt-4o", api_key=api_key)
        context.add_conversation_entry("Code Reviewer", f"Review:\n{review}")
        if "APPROVE" not in review.upper():
            structured_review = {"comments": []}
            for line in review.splitlines():
                if line.strip():
                    structured_review["comments"].append({
                        "issue": line.strip(),
                        "line_number": "N/A",
                        "severity": "Medium"
                    })
            context.review_comments.append(structured_review)
        return context

class QualityAssuranceTesterAgent:
    async def generate_test_cases(self, context: Context, api_key: str) -> Context:
        prompt = (
            "You are a testing agent. Generate comprehensive test cases considering edge cases and error scenarios. "
            "Output in a clear format.\n\n"
            f"Task: {context.optimized_task}\n\nCode:\n{context.code}"
        )
        test_cases = await call_model(prompt, model="gpt-4o", api_key=api_key)
        context.test_cases = test_cases
        context.add_conversation_entry("QA Tester", f"Test Cases:\n{test_cases}")
        return context

    async def run_tests(self, context: Context, api_key: str) -> Context:
        prompt = (
            "Run the test cases. Compare actual vs expected outputs and state any discrepancies. "
            "If all tests pass, output 'TESTS PASSED'.\n\n"
            f"Code:\n{context.code}\n\nTest Cases:\n{context.test_cases}"
        )
        test_results = await call_model(prompt, model="gpt-4o", api_key=api_key)
        context.test_results = test_results
        context.add_conversation_entry("QA Tester", f"Test Results:\n{test_results}")
        return context

class DocumentationAgent:
    async def generate_documentation(self, context: Context, api_key: str) -> Context:
        prompt = (
            "Generate clear documentation including a brief description, explanation, and a --help message.\n\n"
            f"Code:\n{context.code}"
        )
        documentation = await call_model(prompt, model="gpt-4o", api_key=api_key)
        context.documentation = documentation
        context.add_conversation_entry("Documentation Agent", f"Documentation:\n{documentation}")
        return context

# -------------------- Agent Dispatcher --------------------
class AgentDispatcher:
    def __init__(self, log_queue: queue.Queue, human_event: threading.Event, human_input_queue: queue.Queue):
        self.log_queue = log_queue
        self.human_event = human_event
        self.human_input_queue = human_input_queue
        self.agents = {
            "prompt_optimizer": PromptOptimizerAgent(),
            "orchestrator": OrchestratorAgent(log_queue, human_event, human_input_queue),
            "coder": CoderAgent(),
            "code_reviewer": CodeReviewerAgent(),
            "qa_tester": QualityAssuranceTesterAgent(),
            "documentation_agent": DocumentationAgent(),
        }

    async def dispatch(self, agent_name: str, context: Context, api_key: str, **kwargs) -> Context:
        self.log_queue.put((f"[{agent_name.replace('_', ' ').title()}]", "Starting task..."))
        if agent_name == "prompt_optimizer":
            context = await self.agents[agent_name].optimize_prompt(context, api_key)
        elif agent_name == "orchestrator":
            context = await self.agents[agent_name].generate_plan(context, api_key)
        elif agent_name == "coder":
            context = await self.agents[agent_name].generate_code(context, api_key, **kwargs)
        elif agent_name == "code_reviewer":
            context = await self.agents[agent_name].review_code(context, api_key)
        elif agent_name == "qa_tester":
            if kwargs.get("generate_tests", False):
                context = await self.agents[agent_name].generate_test_cases(context, api_key)
            elif kwargs.get("run_tests", False):
                context = await self.agents[agent_name].run_tests(context, api_key)
        elif agent_name == "documentation_agent":
            context = await self.agents[agent_name].generate_documentation(context, api_key)
        else:
            raise ValueError(f"Unknown agent: {agent_name}")
        self.log_queue.put(("update", context.conversation_history))
        return context

    async def determine_next_agent(self, context: Context, api_key: str) -> str:
        if not context.optimized_task:
            return "prompt_optimizer"
        if not context.plan:
            return "orchestrator"
        if not context.code:
            return "coder"
        if not any("APPROVE" in entry["message"].upper() 
                   for entry in context.conversation_history 
                   if entry["agent"].lower() == "code reviewer"):
            return "code_reviewer"
        if not context.test_cases:
            return "qa_tester"
        if not context.test_results or "TESTS PASSED" not in context.test_results.upper():
            return "qa_tester"
        if not context.documentation:
            return "documentation_agent"
        return "done"

# -------------------- Multi-Agent Conversation --------------------
async def multi_agent_conversation(task_message: str, log_queue: queue.Queue, api_key: str,
                                   human_event: threading.Event, human_input_queue: queue.Queue) -> None:
    context = Context(original_task=task_message)
    dispatcher = AgentDispatcher(log_queue, human_event, human_input_queue)
    next_agent = await dispatcher.determine_next_agent(context, api_key)
    coder_iterations = 0
    while next_agent != "done":
        if next_agent == "qa_tester":
            if not context.test_cases:
                context = await dispatcher.dispatch(next_agent, context, api_key, generate_tests=True)
            else:
                context = await dispatcher.dispatch(next_agent, context, api_key, run_tests=True)
        elif next_agent == "coder" and (context.review_comments or context.test_results):
            coder_iterations += 1
            context = await dispatcher.dispatch(next_agent, context, api_key, model="gpt-3.5-turbo-16k")
        else:
            context = await dispatcher.dispatch(next_agent, context, api_key)
        if next_agent == "code_reviewer":
            approved = any("APPROVE" in entry["message"].upper() 
                           for entry in context.conversation_history 
                           if entry["agent"].lower() == "code reviewer")
            if approved:
                next_agent = await dispatcher.determine_next_agent(context, api_key)
            else:
                next_agent = "coder"
        else:
            next_agent = await dispatcher.determine_next_agent(context, api_key)
        if next_agent == "coder" and coder_iterations > 5:
            log_queue.put(("[System]", "Maximum revision iterations reached. Exiting."))
            break
    log_queue.put(("result", context.conversation_history))

# -------------------- Process Conversation Generator --------------------
def process_conversation_generator(task_message: str, api_key: str,
                                   human_event: threading.Event, human_input_queue: queue.Queue,
                                   log_queue: queue.Queue) -> Generator[Any, None, None]:
    """
    Runs the multi-agent conversation in a background thread and yields conversation history updates
    as a tuple: (chat update, log state update).
    """
    last_log_text = ""
    def run_conversation():
        asyncio.run(multi_agent_conversation(task_message, log_queue, api_key, human_event, human_input_queue))
    
    conversation_thread = threading.Thread(target=run_conversation)
    conversation_thread.start()
    
    while conversation_thread.is_alive() or not log_queue.empty():
        try:
            msg = log_queue.get(timeout=0.1)
            if isinstance(msg, tuple) and msg[0] in ("update", "result"):
                chat_update = gr.update(value=convert_history(msg[1]), visible=True)
                last_log_text = conversation_to_text(msg[1])
                state_update = gr.update(value=last_log_text)
                yield (chat_update, state_update)
            else:
                pass
        except queue.Empty:
            pass
        time.sleep(0.1)
    
    yield (gr.update(visible=True), gr.update(value=last_log_text))

# -------------------- Multi-Agent Chat Function --------------------
def multi_agent_chat(message: str, openai_api_key: str = None) -> Generator[Any, None, None]:
    if not openai_api_key:
        openai_api_key = os.getenv("OPENAI_API_KEY")
        if not openai_api_key:
            yield (gr.update(value=[{"role": "assistant", "content": "Error: API key not provided."}]), gr.update())
            return
    human_event = threading.Event()
    human_input_queue = queue.Queue()
    log_queue = queue.Queue()
    yield from process_conversation_generator(message, openai_api_key, human_event, human_input_queue, log_queue)

# -------------------- Download Log Function --------------------
def download_log(log_text: str) -> str:
    """
    Writes the log text to a temporary file and returns the file path.
    """
    with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w", encoding="utf-8") as f:
        f.write(log_text)
        return f.name

# -------------------- Custom Gradio Blocks Interface --------------------
css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}.styler{--form-gap-width: 0px !important}
#progress{height:30px}#progress .generating{display:none}.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}

/* Add this to make the chatbot bigger */
.chat-container {
    height: 600px; /* Adjust as needed */
    overflow-y: scroll; /* Add scrollbar if content overflows */
}
'''

with gr.Blocks(theme="CultriX/gradio-theme", css=css, delete_cache=(60, 60)) as demo:
    gr.Markdown("## Multi-Agent Task Solver with Human-in-the-Loop")

    with gr.Row():
        with gr.Column():  # Add a column for better layout
            chat_output = gr.Chatbot(label="Conversation", type="messages")
            chat_output.wrap = gr.HTML("<div class='chat-container'></div>") # Wrap after creation


    # Hidden state to store the plain-text log.
    log_state = gr.State(value="")

    with gr.Row():
        with gr.Column(scale=8):
            message_input = gr.Textbox(label="Enter your task", placeholder="Type your task here...", lines=3)
        with gr.Column(scale=2):
            api_key_input = gr.Textbox(label="API Key (optional)", type="password", placeholder="Leave blank to use env variable")
        send_button = gr.Button("Send")

    # The multi_agent_chat function now outputs two values: one for the chat and one for the log.
    send_button.click(fn=multi_agent_chat, inputs=[message_input, api_key_input], outputs=[chat_output, log_state])

    with gr.Row():
        download_button = gr.Button("Download Log")
        download_file = gr.File(label="Download your log file")
        download_button.click(fn=download_log, inputs=log_state, outputs=download_file)

if __name__ == "__main__":
    demo.launch(share=True)