Spaces:
Running
Running
File size: 19,785 Bytes
02d640a b07e47b 02d640a b07e47b 02d640a b07e47b c64b7d2 3c1c644 763898d b07e47b ffea40d c64b7d2 b07e47b 7b71415 3c1c644 ffea40d 69af1c5 c64b7d2 ffea40d 763898d ffea40d c64b7d2 7b71415 c64b7d2 7b71415 763898d 7b71415 763898d 7b71415 763898d 7b71415 c64b7d2 7b71415 7eced9b f8ccbbf 7eced9b 3c1c644 4f8a105 66bf159 7eced9b 4f8a105 ffea40d 4f8a105 763898d 4f8a105 69af1c5 4f8a105 ffea40d c64b7d2 ffea40d 763898d 69af1c5 ffea40d 763898d c64b7d2 763898d f8ccbbf 763898d f8ccbbf c64b7d2 763898d c64b7d2 f8ccbbf 763898d f8ccbbf c64b7d2 763898d c64b7d2 763898d ffea40d 4f8a105 ffea40d 4f8a105 763898d 4f8a105 ffea40d 69af1c5 4f8a105 ffea40d 4f8a105 ffea40d 763898d 4f8a105 b07e47b 69af1c5 4f8a105 763898d 4f8a105 ffea40d 69af1c5 4f8a105 69af1c5 763898d 4f8a105 69af1c5 4f8a105 69af1c5 4f8a105 69af1c5 763898d 4f8a105 69af1c5 642e9cc 4f8a105 69af1c5 ffea40d 4f8a105 ffea40d 763898d 4f8a105 b07e47b 69af1c5 4f8a105 763898d 4f8a105 763898d 4f8a105 763898d 4f8a105 763898d 4f8a105 f8ccbbf 4f8a105 c64b7d2 4f8a105 c64b7d2 4f8a105 c64b7d2 4f8a105 c64b7d2 4f8a105 c64b7d2 4f8a105 c64b7d2 4f8a105 c64b7d2 4f8a105 c64b7d2 f8ccbbf 4f8a105 763898d 4f8a105 3c1c644 4f8a105 763898d 4f8a105 c64b7d2 4f8a105 763898d 4f8a105 763898d 4f8a105 763898d 4f8a105 763898d 4f8a105 763898d 4f8a105 763898d 66bf159 763898d 66bf159 4f8a105 763898d f8ccbbf 763898d 4f8a105 ffea40d c64b7d2 763898d f8ccbbf ffea40d 66bf159 3c1c644 ffea40d 69c7141 479edc1 ffea40d 479edc1 69c7141 ffea40d 763898d 479edc1 69c7141 4b2e1da c64b7d2 ffea40d 69af1c5 3c1c644 69af1c5 763898d b07e47b 3c1c644 c64b7d2 74002ea c2c827a 74002ea c2c827a e9d8102 c64b7d2 c2c827a c64b7d2 9a33663 c2c827a 3c1c644 c2c827a c64b7d2 c2c827a 3c1c644 c2c827a 3c1c644 c2c827a 69af1c5 b07e47b 9a33663 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import os
import asyncio
import logging
import threading
import queue
import gradio as gr
import httpx
import time
import tempfile
from typing import Generator, Any, Dict, List, Optional
# -------------------- Configuration --------------------
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# -------------------- External Model Call (with Caching and Retry) --------------------
async def call_model(prompt: str, model: str = "gpt-4o", api_key: str = None, max_retries: int = 3) -> str:
if api_key is None:
api_key = os.getenv("OPENAI_API_KEY")
if api_key is None:
raise ValueError("OpenAI API key not provided.")
url = "https://api.openai.com/v1/chat/completions"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
}
payload = {
"model": model,
"messages": [{"role": "user", "content": prompt}],
}
for attempt in range(max_retries):
try:
async with httpx.AsyncClient(timeout=httpx.Timeout(300.0)) as client:
response = await client.post(url, headers=headers, json=payload)
response.raise_for_status()
response_json = response.json()
return response_json["choices"][0]["message"]["content"]
except httpx.HTTPStatusError as e:
logging.error(f"HTTP error (attempt {attempt + 1}/{max_retries}): {e}")
if e.response.status_code in (502, 503, 504):
await asyncio.sleep(2 ** attempt)
continue
else:
raise
except httpx.RequestError as e:
logging.error(f"Request error (attempt {attempt + 1}/{max_retries}): {e}")
await asyncio.sleep(2 ** attempt)
continue
except Exception as e:
logging.error(f"Unexpected error (attempt {attempt+1}/{max_retries}): {e}")
raise
raise Exception(f"Failed to get response after {max_retries} attempts.")
# -------------------- Conversation History Conversion --------------------
def convert_history(history: List[Dict[str, str]]) -> List[Dict[str, str]]:
"""
Convert our internal conversation history (with 'agent' and 'message')
into the Gradio messages format (with 'role' and 'content').
"""
converted = []
for entry in history:
if entry["agent"].lower() == "user":
converted.append({"role": "user", "content": entry["message"]})
else:
converted.append({"role": "assistant", "content": f'{entry["agent"]}: {entry["message"]}'})
return converted
def conversation_to_text(history: List[Dict[str, str]]) -> str:
"""
Convert the conversation history to a plain-text log.
"""
lines = []
for entry in history:
lines.append(f"{entry['agent']}: {entry['message']}")
return "\n".join(lines)
# -------------------- Shared Context --------------------
class Context:
def __init__(self, original_task: str, optimized_task: Optional[str] = None,
plan: Optional[str] = None, code: Optional[str] = None,
review_comments: Optional[List[Dict[str, str]]] = None,
test_cases: Optional[str] = None, test_results: Optional[str] = None,
documentation: Optional[str] = None, conversation_history: Optional[List[Dict[str, str]]] = None):
self.original_task = original_task
self.optimized_task = optimized_task
self.plan = plan
self.code = code
self.review_comments = review_comments or []
self.test_cases = test_cases
self.test_results = test_results
self.documentation = documentation
# Initialize with the user's task.
self.conversation_history = conversation_history or [{"agent": "User", "message": original_task}]
def add_conversation_entry(self, agent_name: str, message: str):
self.conversation_history.append({"agent": agent_name, "message": message})
# -------------------- Agent Classes --------------------
class PromptOptimizerAgent:
async def optimize_prompt(self, context: Context, api_key: str) -> Context:
system_prompt = (
"Improve the prompt. Be clear, specific, and complete. "
"Keep original intent. Return ONLY the revised prompt."
)
full_prompt = f"{system_prompt}\n\nUser's prompt:\n{context.original_task}"
optimized = await call_model(full_prompt, model="gpt-4o", api_key=api_key)
context.optimized_task = optimized
context.add_conversation_entry("Prompt Optimizer", f"Optimized Task:\n{optimized}")
return context
class OrchestratorAgent:
def __init__(self, log_queue: queue.Queue, human_event: threading.Event, human_input_queue: queue.Queue):
self.log_queue = log_queue
self.human_event = human_event
self.human_input_queue = human_input_queue
async def generate_plan(self, context: Context, api_key: str) -> Context:
while True:
if context.plan:
prompt = (
f"You are a planner. Revise/complete the plan for '{context.original_task}'. "
"If unsure, output 'REQUEST_HUMAN_FEEDBACK\\n[Question]'"
)
else:
prompt = (
f"You are a planner. Create a plan for: '{context.optimized_task}'. "
"Break down the task and assign sub-tasks to: Coder, Code Reviewer, Quality Assurance Tester, and Documentation Agent. "
"Include review/revision steps, error handling, and documentation instructions.\n\n"
"If unsure, output 'REQUEST_HUMAN_FEEDBACK\\n[Question]'"
)
plan = await call_model(prompt, model="gpt-4o", api_key=api_key)
context.add_conversation_entry("Orchestrator", f"Plan:\n{plan}")
self.log_queue.put(("update", context.conversation_history))
if "REQUEST_HUMAN_FEEDBACK" in plan:
question = plan.split("REQUEST_HUMAN_FEEDBACK\n", 1)[1].strip()
self.log_queue.put(("[Orchestrator]", f"Requesting human feedback... Question: {question}"))
feedback_context = (
f"Task: {context.optimized_task}\nCurrent Plan: {context.plan or 'None'}\nQuestion: {question}"
)
self.human_event.set()
self.human_input_queue.put(feedback_context)
human_response = self.human_input_queue.get() # Blocking waiting for human response
self.human_event.clear()
self.log_queue.put(("[Orchestrator]", f"Received human feedback: {human_response}"))
context.plan = (context.plan + "\n" + human_response) if context.plan else human_response
else:
context.plan = plan
break
return context
class CoderAgent:
async def generate_code(self, context: Context, api_key: str, model: str = "gpt-4o") -> Context:
prompt = (
"You are a coding agent. Output ONLY the code. "
"Adhere to best practices and include error handling.\n\n"
f"Instructions:\n{context.plan}"
)
code = await call_model(prompt, model=model, api_key=api_key)
context.code = code
context.add_conversation_entry("Coder", f"Code:\n{code}")
return context
class CodeReviewerAgent:
async def review_code(self, context: Context, api_key: str) -> Context:
prompt = (
"You are a code reviewer. Provide CONCISE feedback focusing on correctness, efficiency, readability, error handling, and security. "
"If the code is acceptable, respond with ONLY 'APPROVE'. Do NOT generate code.\n\n"
f"Task: {context.optimized_task}\n\nCode:\n{context.code}"
)
review = await call_model(prompt, model="gpt-4o", api_key=api_key)
context.add_conversation_entry("Code Reviewer", f"Review:\n{review}")
if "APPROVE" not in review.upper():
structured_review = {"comments": []}
for line in review.splitlines():
if line.strip():
structured_review["comments"].append({
"issue": line.strip(),
"line_number": "N/A",
"severity": "Medium"
})
context.review_comments.append(structured_review)
return context
class QualityAssuranceTesterAgent:
async def generate_test_cases(self, context: Context, api_key: str) -> Context:
prompt = (
"You are a testing agent. Generate comprehensive test cases considering edge cases and error scenarios. "
"Output in a clear format.\n\n"
f"Task: {context.optimized_task}\n\nCode:\n{context.code}"
)
test_cases = await call_model(prompt, model="gpt-4o", api_key=api_key)
context.test_cases = test_cases
context.add_conversation_entry("QA Tester", f"Test Cases:\n{test_cases}")
return context
async def run_tests(self, context: Context, api_key: str) -> Context:
prompt = (
"Run the test cases. Compare actual vs expected outputs and state any discrepancies. "
"If all tests pass, output 'TESTS PASSED'.\n\n"
f"Code:\n{context.code}\n\nTest Cases:\n{context.test_cases}"
)
test_results = await call_model(prompt, model="gpt-4o", api_key=api_key)
context.test_results = test_results
context.add_conversation_entry("QA Tester", f"Test Results:\n{test_results}")
return context
class DocumentationAgent:
async def generate_documentation(self, context: Context, api_key: str) -> Context:
prompt = (
"Generate clear documentation including a brief description, explanation, and a --help message.\n\n"
f"Code:\n{context.code}"
)
documentation = await call_model(prompt, model="gpt-4o", api_key=api_key)
context.documentation = documentation
context.add_conversation_entry("Documentation Agent", f"Documentation:\n{documentation}")
return context
# -------------------- Agent Dispatcher --------------------
class AgentDispatcher:
def __init__(self, log_queue: queue.Queue, human_event: threading.Event, human_input_queue: queue.Queue):
self.log_queue = log_queue
self.human_event = human_event
self.human_input_queue = human_input_queue
self.agents = {
"prompt_optimizer": PromptOptimizerAgent(),
"orchestrator": OrchestratorAgent(log_queue, human_event, human_input_queue),
"coder": CoderAgent(),
"code_reviewer": CodeReviewerAgent(),
"qa_tester": QualityAssuranceTesterAgent(),
"documentation_agent": DocumentationAgent(),
}
async def dispatch(self, agent_name: str, context: Context, api_key: str, **kwargs) -> Context:
self.log_queue.put((f"[{agent_name.replace('_', ' ').title()}]", "Starting task..."))
if agent_name == "prompt_optimizer":
context = await self.agents[agent_name].optimize_prompt(context, api_key)
elif agent_name == "orchestrator":
context = await self.agents[agent_name].generate_plan(context, api_key)
elif agent_name == "coder":
context = await self.agents[agent_name].generate_code(context, api_key, **kwargs)
elif agent_name == "code_reviewer":
context = await self.agents[agent_name].review_code(context, api_key)
elif agent_name == "qa_tester":
if kwargs.get("generate_tests", False):
context = await self.agents[agent_name].generate_test_cases(context, api_key)
elif kwargs.get("run_tests", False):
context = await self.agents[agent_name].run_tests(context, api_key)
elif agent_name == "documentation_agent":
context = await self.agents[agent_name].generate_documentation(context, api_key)
else:
raise ValueError(f"Unknown agent: {agent_name}")
self.log_queue.put(("update", context.conversation_history))
return context
async def determine_next_agent(self, context: Context, api_key: str) -> str:
if not context.optimized_task:
return "prompt_optimizer"
if not context.plan:
return "orchestrator"
if not context.code:
return "coder"
if not any("APPROVE" in entry["message"].upper()
for entry in context.conversation_history
if entry["agent"].lower() == "code reviewer"):
return "code_reviewer"
if not context.test_cases:
return "qa_tester"
if not context.test_results or "TESTS PASSED" not in context.test_results.upper():
return "qa_tester"
if not context.documentation:
return "documentation_agent"
return "done"
# -------------------- Multi-Agent Conversation --------------------
async def multi_agent_conversation(task_message: str, log_queue: queue.Queue, api_key: str,
human_event: threading.Event, human_input_queue: queue.Queue) -> None:
context = Context(original_task=task_message)
dispatcher = AgentDispatcher(log_queue, human_event, human_input_queue)
next_agent = await dispatcher.determine_next_agent(context, api_key)
coder_iterations = 0
while next_agent != "done":
if next_agent == "qa_tester":
if not context.test_cases:
context = await dispatcher.dispatch(next_agent, context, api_key, generate_tests=True)
else:
context = await dispatcher.dispatch(next_agent, context, api_key, run_tests=True)
elif next_agent == "coder" and (context.review_comments or context.test_results):
coder_iterations += 1
context = await dispatcher.dispatch(next_agent, context, api_key, model="gpt-3.5-turbo-16k")
else:
context = await dispatcher.dispatch(next_agent, context, api_key)
if next_agent == "code_reviewer":
approved = any("APPROVE" in entry["message"].upper()
for entry in context.conversation_history
if entry["agent"].lower() == "code reviewer")
if approved:
next_agent = await dispatcher.determine_next_agent(context, api_key)
else:
next_agent = "coder"
else:
next_agent = await dispatcher.determine_next_agent(context, api_key)
if next_agent == "coder" and coder_iterations > 5:
log_queue.put(("[System]", "Maximum revision iterations reached. Exiting."))
break
log_queue.put(("result", context.conversation_history))
# -------------------- Process Conversation Generator --------------------
def process_conversation_generator(task_message: str, api_key: str,
human_event: threading.Event, human_input_queue: queue.Queue,
log_queue: queue.Queue) -> Generator[Any, None, None]:
"""
Runs the multi-agent conversation in a background thread and yields conversation history updates
as a tuple: (chat update, log state update).
"""
last_log_text = ""
def run_conversation():
asyncio.run(multi_agent_conversation(task_message, log_queue, api_key, human_event, human_input_queue))
conversation_thread = threading.Thread(target=run_conversation)
conversation_thread.start()
while conversation_thread.is_alive() or not log_queue.empty():
try:
msg = log_queue.get(timeout=0.1)
if isinstance(msg, tuple) and msg[0] in ("update", "result"):
chat_update = gr.update(value=convert_history(msg[1]), visible=True)
last_log_text = conversation_to_text(msg[1])
state_update = gr.update(value=last_log_text)
yield (chat_update, state_update)
else:
pass
except queue.Empty:
pass
time.sleep(0.1)
yield (gr.update(visible=True), gr.update(value=last_log_text))
# -------------------- Multi-Agent Chat Function --------------------
def multi_agent_chat(message: str, openai_api_key: str = None) -> Generator[Any, None, None]:
if not openai_api_key:
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
yield (gr.update(value=[{"role": "assistant", "content": "Error: API key not provided."}]), gr.update())
return
human_event = threading.Event()
human_input_queue = queue.Queue()
log_queue = queue.Queue()
yield from process_conversation_generator(message, openai_api_key, human_event, human_input_queue, log_queue)
# -------------------- Download Log Function --------------------
def download_log(log_text: str) -> str:
"""
Writes the log text to a temporary file and returns the file path.
"""
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w", encoding="utf-8") as f:
f.write(log_text)
return f.name
# -------------------- Custom Gradio Blocks Interface --------------------
css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}.styler{--form-gap-width: 0px !important}
#progress{height:30px}#progress .generating{display:none}.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
/* Add this to make the chatbot bigger */
.chat-container {
height: 600px; /* Adjust as needed */
overflow-y: scroll; /* Add scrollbar if content overflows */
}
'''
with gr.Blocks(theme="CultriX/gradio-theme", css=css, delete_cache=(60, 60)) as demo:
gr.Markdown("## Multi-Agent Task Solver with Human-in-the-Loop")
with gr.Row():
with gr.Column(): # Add a column for better layout
chat_output = gr.Chatbot(label="Conversation", type="messages")
chat_output.wrap = gr.HTML("<div class='chat-container'></div>") # Wrap after creation
# Hidden state to store the plain-text log.
log_state = gr.State(value="")
with gr.Row():
with gr.Column(scale=8):
message_input = gr.Textbox(label="Enter your task", placeholder="Type your task here...", lines=3)
with gr.Column(scale=2):
api_key_input = gr.Textbox(label="API Key (optional)", type="password", placeholder="Leave blank to use env variable")
send_button = gr.Button("Send")
# The multi_agent_chat function now outputs two values: one for the chat and one for the log.
send_button.click(fn=multi_agent_chat, inputs=[message_input, api_key_input], outputs=[chat_output, log_state])
with gr.Row():
download_button = gr.Button("Download Log")
download_file = gr.File(label="Download your log file")
download_button.click(fn=download_log, inputs=log_state, outputs=download_file)
if __name__ == "__main__":
demo.launch(share=True) |