import gradio as gr import os import json import datetime import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import yaml import uuid import tempfile import shutil # Demo configuration DEMO_CASE_ID = f"DEMO-{uuid.uuid4().hex[:8]}" DEMO_OUTPUT_DIR = "demo_output" DEMO_EVIDENCE_DIR = os.path.join(DEMO_OUTPUT_DIR, "evidence") DEMO_ANALYSIS_DIR = os.path.join(DEMO_OUTPUT_DIR, "analysis") DEMO_REPORT_DIR = os.path.join(DEMO_OUTPUT_DIR, "reports") # Create directories if they don't exist os.makedirs(DEMO_EVIDENCE_DIR, exist_ok=True) os.makedirs(DEMO_ANALYSIS_DIR, exist_ok=True) os.makedirs(DEMO_REPORT_DIR, exist_ok=True) # Cloud provider connection functions def test_aws_connection(access_key, secret_key, region): """Test connection to AWS""" try: import boto3 session = boto3.Session( aws_access_key_id=access_key, aws_secret_access_key=secret_key, region_name=region ) sts = session.client('sts') identity = sts.get_caller_identity() return True, f"Successfully connected to AWS as {identity['Arn']}" except Exception as e: return False, f"Failed to connect to AWS: {str(e)}" def test_azure_connection(tenant_id, client_id, client_secret): """Test connection to Azure""" try: from azure.identity import ClientSecretCredential from azure.mgmt.resource import ResourceManagementClient credential = ClientSecretCredential( tenant_id=tenant_id, client_id=client_id, client_secret=client_secret ) # Create a resource management client resource_client = ResourceManagementClient(credential, subscription_id) # List resource groups to test the connection resource_groups = list(resource_client.resource_groups.list()) return True, f"Successfully connected to Azure. Found {len(resource_groups)} resource groups." except Exception as e: return False, f"Failed to connect to Azure: {str(e)}" def test_gcp_connection(service_account_json): """Test connection to GCP""" try: import json from google.oauth2 import service_account from google.cloud import storage # Create a temporary file to store the service account JSON fd, path = tempfile.mkstemp() try: with os.fdopen(fd, 'w') as tmp: tmp.write(service_account_json) # Create credentials from the service account file credentials = service_account.Credentials.from_service_account_file(path) # Create a storage client to test the connection storage_client = storage.Client(credentials=credentials) # List buckets to test the connection buckets = list(storage_client.list_buckets()) return True, f"Successfully connected to GCP. Found {len(buckets)} storage buckets." finally: os.remove(path) except Exception as e: return False, f"Failed to connect to GCP: {str(e)}" # Sample data for demonstration def generate_sample_data(case_info, cloud_provider, incident_type, use_real_data=False, credentials=None): """Generate sample data for demonstration purposes or collect real data if credentials provided""" if use_real_data and credentials: # This would be where we implement real data collection using the provided credentials # For now, we'll return a message indicating this would use real data return { "timeline": [], "patterns": [], "anomalies": [], "files": {}, "message": "In a production deployment, this would collect real data from your cloud provider." } # Create sample timeline data timeline_data = [] base_time = datetime.datetime.now() - datetime.timedelta(days=1) # Different events based on incident type if incident_type == "Unauthorized Access": events = [ {"event": "Failed login attempt", "source": "Authentication Logs", "severity": "Low"}, {"event": "Successful login from unusual IP", "source": "Authentication Logs", "severity": "Medium"}, {"event": "User privilege escalation", "source": "IAM Logs", "severity": "High"}, {"event": "Access to sensitive data", "source": "Data Access Logs", "severity": "High"}, {"event": "Configuration change", "source": "Configuration Logs", "severity": "Medium"}, {"event": "New API key created", "source": "IAM Logs", "severity": "High"}, {"event": "Data download initiated", "source": "Data Access Logs", "severity": "Critical"}, {"event": "Unusual network traffic", "source": "Network Logs", "severity": "Medium"} ] elif incident_type == "Data Exfiltration": events = [ {"event": "Large query executed", "source": "Database Logs", "severity": "Medium"}, {"event": "Unusual data access pattern", "source": "Data Access Logs", "severity": "Medium"}, {"event": "Large data transfer initiated", "source": "Network Logs", "severity": "High"}, {"event": "Connection to unknown external endpoint", "source": "Network Logs", "severity": "High"}, {"event": "Storage object permissions modified", "source": "Storage Logs", "severity": "Medium"}, {"event": "Unusual user behavior", "source": "User Activity Logs", "severity": "Medium"}, {"event": "Data archive created", "source": "Storage Logs", "severity": "Medium"}, {"event": "Unusual egress traffic spike", "source": "Network Logs", "severity": "Critical"} ] else: # Ransomware events = [ {"event": "Unusual process execution", "source": "System Logs", "severity": "Medium"}, {"event": "Multiple file modifications", "source": "File System Logs", "severity": "High"}, {"event": "Encryption library loaded", "source": "System Logs", "severity": "High"}, {"event": "Mass file type changes", "source": "Storage Logs", "severity": "Critical"}, {"event": "Backup deletion attempt", "source": "Backup Logs", "severity": "Critical"}, {"event": "Unusual IAM activity", "source": "IAM Logs", "severity": "Medium"}, {"event": "Recovery service disabled", "source": "System Logs", "severity": "High"}, {"event": "Ransom note created", "source": "File System Logs", "severity": "Critical"} ] # Create timeline with timestamps for i, event in enumerate(events): event_time = base_time + datetime.timedelta(minutes=i*15) timeline_data.append({ "timestamp": event_time.isoformat(), "event": event["event"], "source": event["source"], "cloud_provider": cloud_provider, "severity": event["severity"], "case_id": case_info["case_id"] }) # Create patterns data patterns = [] if incident_type == "Unauthorized Access": patterns = [ {"pattern": "Brute Force Login Attempt", "confidence": 0.85, "matched_events": 3}, {"pattern": "Privilege Escalation", "confidence": 0.92, "matched_events": 2} ] elif incident_type == "Data Exfiltration": patterns = [ {"pattern": "Data Staging Activity", "confidence": 0.88, "matched_events": 3}, {"pattern": "Exfiltration Over Alternative Protocol", "confidence": 0.76, "matched_events": 2} ] else: # Ransomware patterns = [ {"pattern": "Mass File Encryption", "confidence": 0.94, "matched_events": 4}, {"pattern": "Defense Evasion", "confidence": 0.81, "matched_events": 3} ] # Create anomalies data anomalies = [] if incident_type == "Unauthorized Access": anomalies = [ {"anomaly": "Login from unusual location", "deviation": 3.6, "severity": "High"}, {"anomaly": "Off-hours access", "deviation": 2.8, "severity": "Medium"} ] elif incident_type == "Data Exfiltration": anomalies = [ {"anomaly": "Unusual data access volume", "deviation": 4.2, "severity": "High"}, {"anomaly": "Abnormal query pattern", "deviation": 3.1, "severity": "Medium"} ] else: # Ransomware anomalies = [ {"anomaly": "Unusual file system activity", "deviation": 4.7, "severity": "Critical"}, {"anomaly": "Suspicious process behavior", "deviation": 3.9, "severity": "High"} ] # Save data to files timeline_file = os.path.join(DEMO_EVIDENCE_DIR, f"{DEMO_CASE_ID}_timeline.json") patterns_file = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_patterns.json") anomalies_file = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_anomalies.json") with open(timeline_file, 'w') as f: json.dump(timeline_data, f, indent=2) with open(patterns_file, 'w') as f: json.dump(patterns, f, indent=2) with open(anomalies_file, 'w') as f: json.dump(anomalies, f, indent=2) return { "timeline": timeline_data, "patterns": patterns, "anomalies": anomalies, "files": { "timeline": timeline_file, "patterns": patterns_file, "anomalies": anomalies_file } } def analyze_evidence(data): """Perform analysis on the evidence data""" # If there's no timeline data, return empty results if not data["timeline"]: return { "severity_counts": {}, "source_counts": {}, "charts": { "analysis": None, "timeline": None } } # Convert timeline to DataFrame for analysis timeline_df = pd.DataFrame(data["timeline"]) timeline_df["timestamp"] = pd.to_datetime(timeline_df["timestamp"]) # Sort by timestamp timeline_df = timeline_df.sort_values("timestamp") # Count events by severity severity_counts = timeline_df["severity"].value_counts() # Count events by source source_counts = timeline_df["source"].value_counts() # Create visualizations fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5)) # Severity pie chart ax1.pie(severity_counts, labels=severity_counts.index, autopct='%1.1f%%', colors=sns.color_palette("YlOrRd", len(severity_counts))) ax1.set_title("Events by Severity") # Source bar chart sns.barplot(x=source_counts.values, y=source_counts.index, ax=ax2, palette="viridis") ax2.set_title("Events by Source") ax2.set_xlabel("Count") # Save the figure chart_file = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_analysis_charts.png") plt.tight_layout() plt.savefig(chart_file) plt.close() # Create a timeline visualization plt.figure(figsize=(12, 6)) # Create a categorical y-axis based on source sources = timeline_df["source"].unique() source_map = {source: i for i, source in enumerate(sources)} timeline_df["source_num"] = timeline_df["source"].map(source_map) # Map severity to color severity_colors = { "Low": "green", "Medium": "blue", "High": "orange", "Critical": "red" } colors = timeline_df["severity"].map(severity_colors) # Plot the timeline plt.scatter(timeline_df["timestamp"], timeline_df["source_num"], c=colors, s=100) # Add event labels for i, row in timeline_df.iterrows(): plt.text(row["timestamp"], row["source_num"], row["event"], fontsize=8, ha="right", va="bottom", rotation=25) plt.yticks(range(len(sources)), sources) plt.xlabel("Time") plt.ylabel("Event Source") plt.title("Incident Timeline") # Save the timeline timeline_chart = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_timeline_chart.png") plt.tight_layout() plt.savefig(timeline_chart) plt.close() return { "severity_counts": severity_counts.to_dict(), "source_counts": source_counts.to_dict(), "charts": { "analysis": chart_file, "timeline": timeline_chart } } def generate_report(case_info, data, analysis, report_format): """Generate a report based on the analysis""" # Create report content report = { "case_information": case_info, "executive_summary": f"This report presents the findings of a forensic investigation into a {case_info['incident_type']} incident in {case_info['cloud_provider']} cloud environment.", "timeline": data["timeline"], "patterns_detected": data["patterns"], "anomalies_detected": data["anomalies"], "analysis_results": { "severity_distribution": analysis.get("severity_counts", {}), "source_distribution": analysis.get("source_counts", {}) }, "recommendations": [ "Implement multi-factor authentication for all privileged accounts", "Review and restrict IAM permissions following principle of least privilege", "Enable comprehensive logging across all cloud services", "Implement automated alerting for suspicious activities", "Conduct regular security assessments of cloud environments" ] } # Save report in requested format if report_format == "JSON": report_file = os.path.join(DEMO_REPORT_DIR, f"{DEMO_CASE_ID}_report.json") with open(report_file, 'w') as f: json.dump(report, f, indent=2) else: # HTML # Create a simple HTML report html_content = f"""
Case ID: {case_info['case_id']}
Investigator: {case_info['investigator']}
Organization: {case_info['organization']}
Cloud Provider: {case_info['cloud_provider']}
Incident Type: {case_info['incident_type']}
Report Date: {datetime.datetime.now().strftime('%Y-%m-%d')}
{report['executive_summary']}
""" # Add message if using real data if "message" in data: html_content += f"""