Spaces:
Runtime error
Runtime error
File size: 16,073 Bytes
c65e409 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import gradio as gr
import os
import json
import datetime
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import yaml
import uuid
import tempfile
import shutil
# Demo configuration
DEMO_CASE_ID = f"DEMO-{uuid.uuid4().hex[:8]}"
DEMO_OUTPUT_DIR = "demo_output"
DEMO_EVIDENCE_DIR = os.path.join(DEMO_OUTPUT_DIR, "evidence")
DEMO_ANALYSIS_DIR = os.path.join(DEMO_OUTPUT_DIR, "analysis")
DEMO_REPORT_DIR = os.path.join(DEMO_OUTPUT_DIR, "reports")
# Create directories if they don't exist
os.makedirs(DEMO_EVIDENCE_DIR, exist_ok=True)
os.makedirs(DEMO_ANALYSIS_DIR, exist_ok=True)
os.makedirs(DEMO_REPORT_DIR, exist_ok=True)
# Cloud provider connection functions
def test_aws_connection(access_key, secret_key, region):
"""Test connection to AWS"""
try:
import boto3
session = boto3.Session(
aws_access_key_id=access_key,
aws_secret_access_key=secret_key,
region_name=region
)
sts = session.client('sts')
identity = sts.get_caller_identity()
return True, f"Successfully connected to AWS as {identity['Arn']}"
except Exception as e:
return False, f"Failed to connect to AWS: {str(e)}"
def test_azure_connection(tenant_id, client_id, client_secret):
"""Test connection to Azure"""
try:
from azure.identity import ClientSecretCredential
from azure.mgmt.resource import ResourceManagementClient
credential = ClientSecretCredential(
tenant_id=tenant_id,
client_id=client_id,
client_secret=client_secret
)
# Create a resource management client
resource_client = ResourceManagementClient(credential, subscription_id)
# List resource groups to test the connection
resource_groups = list(resource_client.resource_groups.list())
return True, f"Successfully connected to Azure. Found {len(resource_groups)} resource groups."
except Exception as e:
return False, f"Failed to connect to Azure: {str(e)}"
def test_gcp_connection(service_account_json):
"""Test connection to GCP"""
try:
import json
from google.oauth2 import service_account
from google.cloud import storage
# Create a temporary file to store the service account JSON
fd, path = tempfile.mkstemp()
try:
with os.fdopen(fd, 'w') as tmp:
tmp.write(service_account_json)
# Create credentials from the service account file
credentials = service_account.Credentials.from_service_account_file(path)
# Create a storage client to test the connection
storage_client = storage.Client(credentials=credentials)
# List buckets to test the connection
buckets = list(storage_client.list_buckets())
return True, f"Successfully connected to GCP. Found {len(buckets)} storage buckets."
finally:
os.remove(path)
except Exception as e:
return False, f"Failed to connect to GCP: {str(e)}"
# Sample data for demonstration
def generate_sample_data(case_info, cloud_provider, incident_type, use_real_data=False, credentials=None):
"""Generate sample data for demonstration purposes or collect real data if credentials provided"""
if use_real_data and credentials:
# This would be where we implement real data collection using the provided credentials
# For now, we'll return a message indicating this would use real data
return {
"timeline": [],
"patterns": [],
"anomalies": [],
"files": {},
"message": "In a production deployment, this would collect real data from your cloud provider."
}
# Create sample timeline data
timeline_data = []
base_time = datetime.datetime.now() - datetime.timedelta(days=1)
# Different events based on incident type
if incident_type == "Unauthorized Access":
events = [
{"event": "Failed login attempt", "source": "Authentication Logs", "severity": "Low"},
{"event": "Successful login from unusual IP", "source": "Authentication Logs", "severity": "Medium"},
{"event": "User privilege escalation", "source": "IAM Logs", "severity": "High"},
{"event": "Access to sensitive data", "source": "Data Access Logs", "severity": "High"},
{"event": "Configuration change", "source": "Configuration Logs", "severity": "Medium"},
{"event": "New API key created", "source": "IAM Logs", "severity": "High"},
{"event": "Data download initiated", "source": "Data Access Logs", "severity": "Critical"},
{"event": "Unusual network traffic", "source": "Network Logs", "severity": "Medium"}
]
elif incident_type == "Data Exfiltration":
events = [
{"event": "Large query executed", "source": "Database Logs", "severity": "Medium"},
{"event": "Unusual data access pattern", "source": "Data Access Logs", "severity": "Medium"},
{"event": "Large data transfer initiated", "source": "Network Logs", "severity": "High"},
{"event": "Connection to unknown external endpoint", "source": "Network Logs", "severity": "High"},
{"event": "Storage object permissions modified", "source": "Storage Logs", "severity": "Medium"},
{"event": "Unusual user behavior", "source": "User Activity Logs", "severity": "Medium"},
{"event": "Data archive created", "source": "Storage Logs", "severity": "Medium"},
{"event": "Unusual egress traffic spike", "source": "Network Logs", "severity": "Critical"}
]
else: # Ransomware
events = [
{"event": "Unusual process execution", "source": "System Logs", "severity": "Medium"},
{"event": "Multiple file modifications", "source": "File System Logs", "severity": "High"},
{"event": "Encryption library loaded", "source": "System Logs", "severity": "High"},
{"event": "Mass file type changes", "source": "Storage Logs", "severity": "Critical"},
{"event": "Backup deletion attempt", "source": "Backup Logs", "severity": "Critical"},
{"event": "Unusual IAM activity", "source": "IAM Logs", "severity": "Medium"},
{"event": "Recovery service disabled", "source": "System Logs", "severity": "High"},
{"event": "Ransom note created", "source": "File System Logs", "severity": "Critical"}
]
# Create timeline with timestamps
for i, event in enumerate(events):
event_time = base_time + datetime.timedelta(minutes=i*15)
timeline_data.append({
"timestamp": event_time.isoformat(),
"event": event["event"],
"source": event["source"],
"cloud_provider": cloud_provider,
"severity": event["severity"],
"case_id": case_info["case_id"]
})
# Create patterns data
patterns = []
if incident_type == "Unauthorized Access":
patterns = [
{"pattern": "Brute Force Login Attempt", "confidence": 0.85, "matched_events": 3},
{"pattern": "Privilege Escalation", "confidence": 0.92, "matched_events": 2}
]
elif incident_type == "Data Exfiltration":
patterns = [
{"pattern": "Data Staging Activity", "confidence": 0.88, "matched_events": 3},
{"pattern": "Exfiltration Over Alternative Protocol", "confidence": 0.76, "matched_events": 2}
]
else: # Ransomware
patterns = [
{"pattern": "Mass File Encryption", "confidence": 0.94, "matched_events": 4},
{"pattern": "Defense Evasion", "confidence": 0.81, "matched_events": 3}
]
# Create anomalies data
anomalies = []
if incident_type == "Unauthorized Access":
anomalies = [
{"anomaly": "Login from unusual location", "deviation": 3.6, "severity": "High"},
{"anomaly": "Off-hours access", "deviation": 2.8, "severity": "Medium"}
]
elif incident_type == "Data Exfiltration":
anomalies = [
{"anomaly": "Unusual data access volume", "deviation": 4.2, "severity": "High"},
{"anomaly": "Abnormal query pattern", "deviation": 3.1, "severity": "Medium"}
]
else: # Ransomware
anomalies = [
{"anomaly": "Unusual file system activity", "deviation": 4.7, "severity": "Critical"},
{"anomaly": "Suspicious process behavior", "deviation": 3.9, "severity": "High"}
]
# Save data to files
timeline_file = os.path.join(DEMO_EVIDENCE_DIR, f"{DEMO_CASE_ID}_timeline.json")
patterns_file = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_patterns.json")
anomalies_file = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_anomalies.json")
with open(timeline_file, 'w') as f:
json.dump(timeline_data, f, indent=2)
with open(patterns_file, 'w') as f:
json.dump(patterns, f, indent=2)
with open(anomalies_file, 'w') as f:
json.dump(anomalies, f, indent=2)
return {
"timeline": timeline_data,
"patterns": patterns,
"anomalies": anomalies,
"files": {
"timeline": timeline_file,
"patterns": patterns_file,
"anomalies": anomalies_file
}
}
def analyze_evidence(data):
"""Perform analysis on the evidence data"""
# If there's no timeline data, return empty results
if not data["timeline"]:
return {
"severity_counts": {},
"source_counts": {},
"charts": {
"analysis": None,
"timeline": None
}
}
# Convert timeline to DataFrame for analysis
timeline_df = pd.DataFrame(data["timeline"])
timeline_df["timestamp"] = pd.to_datetime(timeline_df["timestamp"])
# Sort by timestamp
timeline_df = timeline_df.sort_values("timestamp")
# Count events by severity
severity_counts = timeline_df["severity"].value_counts()
# Count events by source
source_counts = timeline_df["source"].value_counts()
# Create visualizations
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
# Severity pie chart
ax1.pie(severity_counts, labels=severity_counts.index, autopct='%1.1f%%',
colors=sns.color_palette("YlOrRd", len(severity_counts)))
ax1.set_title("Events by Severity")
# Source bar chart
sns.barplot(x=source_counts.values, y=source_counts.index, ax=ax2, palette="viridis")
ax2.set_title("Events by Source")
ax2.set_xlabel("Count")
# Save the figure
chart_file = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_analysis_charts.png")
plt.tight_layout()
plt.savefig(chart_file)
plt.close()
# Create a timeline visualization
plt.figure(figsize=(12, 6))
# Create a categorical y-axis based on source
sources = timeline_df["source"].unique()
source_map = {source: i for i, source in enumerate(sources)}
timeline_df["source_num"] = timeline_df["source"].map(source_map)
# Map severity to color
severity_colors = {
"Low": "green",
"Medium": "blue",
"High": "orange",
"Critical": "red"
}
colors = timeline_df["severity"].map(severity_colors)
# Plot the timeline
plt.scatter(timeline_df["timestamp"], timeline_df["source_num"], c=colors, s=100)
# Add event labels
for i, row in timeline_df.iterrows():
plt.text(row["timestamp"], row["source_num"], row["event"],
fontsize=8, ha="right", va="bottom", rotation=25)
plt.yticks(range(len(sources)), sources)
plt.xlabel("Time")
plt.ylabel("Event Source")
plt.title("Incident Timeline")
# Save the timeline
timeline_chart = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_timeline_chart.png")
plt.tight_layout()
plt.savefig(timeline_chart)
plt.close()
return {
"severity_counts": severity_counts.to_dict(),
"source_counts": source_counts.to_dict(),
"charts": {
"analysis": chart_file,
"timeline": timeline_chart
}
}
def generate_report(case_info, data, analysis, report_format):
"""Generate a report based on the analysis"""
# Create report content
report = {
"case_information": case_info,
"executive_summary": f"This report presents the findings of a forensic investigation into a {case_info['incident_type']} incident in {case_info['cloud_provider']} cloud environment.",
"timeline": data["timeline"],
"patterns_detected": data["patterns"],
"anomalies_detected": data["anomalies"],
"analysis_results": {
"severity_distribution": analysis.get("severity_counts", {}),
"source_distribution": analysis.get("source_counts", {})
},
"recommendations": [
"Implement multi-factor authentication for all privileged accounts",
"Review and restrict IAM permissions following principle of least privilege",
"Enable comprehensive logging across all cloud services",
"Implement automated alerting for suspicious activities",
"Conduct regular security assessments of cloud environments"
]
}
# Save report in requested format
if report_format == "JSON":
report_file = os.path.join(DEMO_REPORT_DIR, f"{DEMO_CASE_ID}_report.json")
with open(report_file, 'w') as f:
json.dump(report, f, indent=2)
else: # HTML
# Create a simple HTML report
html_content = f"""
<!DOCTYPE html>
<html>
<head>
<title>Forensic Analysis Report - {case_info['case_id']}</title>
<style>
body {{ font-family: Arial, sans-serif; margin: 40px; }}
h1, h2, h3 {{ color: #2c3e50; }}
.section {{ margin-bottom: 30px; }}
.severity-high {{ color: #e74c3c; }}
.severity-medium {{ color: #f39c12; }}
.severity-low {{ color: #27ae60; }}
table {{ border-collapse: collapse; width: 100%; }}
th, td {{ border: 1px solid #ddd; padding: 8px; text-align: left; }}
th {{ background-color: #f2f2f2; }}
tr:nth-child(even) {{ background-color: #f9f9f9; }}
.chart-container {{ display: flex; justify-content: center; margin: 20px 0; }}
.chart {{ max-width: 100%; height: auto; margin: 10px; }}
.message {{ background-color: #f8f9fa; padding: 15px; border-left: 5px solid #4e73df; margin-bottom: 20px; }}
</style>
</head>
<body>
<h1>Cloud Forensics Analysis Report</h1>
<div class="section">
<h2>Case Information</h2>
<p><strong>Case ID:</strong> {case_info['case_id']}</p>
<p><strong>Investigator:</strong> {case_info['investigator']}</p>
<p><strong>Organization:</strong> {case_info['organization']}</p>
<p><strong>Cloud Provider:</strong> {case_info['cloud_provider']}</p>
<p><strong>Incident Type:</strong> {case_info['incident_type']}</p>
<p><strong>Report Date:</strong> {datetime.datetime.now().strftime('%Y-%m-%d')}</p>
</div>
<div class="section">
<h2>Executive Summary</h2>
<p>{report['executive_summary']}</p>
"""
# Add message if using real data
if "message" in data:
html_content += f"""
<div class="mes
(Content truncated due to size limit. Use line ranges to read in chunks) |