Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
def local_correlation( | |
feature0, | |
feature1, | |
local_radius, | |
padding_mode="zeros", | |
flow = None, | |
sample_mode = "bilinear", | |
): | |
r = local_radius | |
K = (2*r+1)**2 | |
B, c, h, w = feature0.size() | |
corr = torch.empty((B,K,h,w), device = feature0.device, dtype=feature0.dtype) | |
if flow is None: | |
# If flow is None, assume feature0 and feature1 are aligned | |
coords = torch.meshgrid( | |
( | |
torch.linspace(-1 + 1 / h, 1 - 1 / h, h, device=feature0.device), | |
torch.linspace(-1 + 1 / w, 1 - 1 / w, w, device=feature0.device), | |
), | |
indexing = 'ij' | |
) | |
coords = torch.stack((coords[1], coords[0]), dim=-1)[ | |
None | |
].expand(B, h, w, 2) | |
else: | |
coords = flow.permute(0,2,3,1) # If using flow, sample around flow target. | |
local_window = torch.meshgrid( | |
( | |
torch.linspace(-2*local_radius/h, 2*local_radius/h, 2*r+1, device=feature0.device), | |
torch.linspace(-2*local_radius/w, 2*local_radius/w, 2*r+1, device=feature0.device), | |
), | |
indexing = 'ij' | |
) | |
local_window = torch.stack((local_window[1], local_window[0]), dim=-1)[ | |
None | |
].expand(1, 2*r+1, 2*r+1, 2).reshape(1, (2*r+1)**2, 2) | |
for _ in range(B): | |
with torch.no_grad(): | |
local_window_coords = (coords[_,:,:,None]+local_window[:,None,None]).reshape(1,h,w*(2*r+1)**2,2) | |
window_feature = F.grid_sample( | |
feature1[_:_+1], local_window_coords, padding_mode=padding_mode, align_corners=False, mode = sample_mode, # | |
) | |
window_feature = window_feature.reshape(c,h,w,(2*r+1)**2) | |
corr[_] = (feature0[_,...,None]/(c**.5)*window_feature).sum(dim=0).permute(2,0,1) | |
return corr | |