Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,709 Bytes
5f9d349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
/*
* Copyright (C) 2020, Inria
* GRAPHDECO research group, https://team.inria.fr/graphdeco
* All rights reserved.
*
* This software is free for non-commercial, research and evaluation use
* under the terms of the LICENSE.md file.
*
* For inquiries contact [email protected] and/or [email protected]
*/
#include <projects/ulr/renderer/ULRV3Renderer.hpp>
sibr::ULRV3Renderer::ULRV3Renderer(const std::vector<InputCamera::Ptr> & cameras, const uint w, const uint h, const std::string & fShader, const std::string & vShader, const bool facecull)
{
_backFaceCulling = facecull;
fragString = fShader;
vertexString = vShader;
_maxNumCams = cameras.size();
_camsCount = int(_maxNumCams);
// Populate the cameraInfos array (will be uploaded to the GPU).
_cameraInfos.clear();
_cameraInfos.resize(_maxNumCams);
for (size_t i = 0; i < _maxNumCams; ++i) {
const auto & cam = *cameras[i];
_cameraInfos[i].vp = cam.viewproj();
_cameraInfos[i].pos = cam.position();
_cameraInfos[i].dir = cam.dir();
_cameraInfos[i].selected = cam.isActive();
}
// Compute the max number of cameras allowed.
GLint maxBlockSize = 0, maxSlicesSize = 0;
glGetIntegerv(GL_MAX_UNIFORM_BLOCK_SIZE, &maxBlockSize);
glGetIntegerv(GL_MAX_ARRAY_TEXTURE_LAYERS, &maxSlicesSize);
// For each camera we store a matrix, 2 vecs3, 2 floats (including padding).
const unsigned int bytesPerCamera = 4 * (16 + 2 * 3 + 2);
const unsigned int maxCamerasAllowed = std::min((unsigned int)maxSlicesSize, (unsigned int)(maxBlockSize / bytesPerCamera));
std::cout << "[ULRV3Renderer] " << "MAX_UNIFORM_BLOCK_SIZE: " << maxBlockSize << ", MAX_ARRAY_TEXTURE_LAYERS: " << maxSlicesSize << ", meaning at most " << maxCamerasAllowed << " cameras." << std::endl;
// Create UBO.
_uboIndex = 0;
glGenBuffers(1, &_uboIndex);
glBindBuffer(GL_UNIFORM_BUFFER, _uboIndex);
glBufferData(GL_UNIFORM_BUFFER, sizeof(CameraUBOInfos)*_maxNumCams, &_cameraInfos[0], GL_DYNAMIC_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
// Setup shaders and uniforms.
setupShaders(fragString, vertexString);
// Create the intermediate rendertarget.
_depthRT.reset(new sibr::RenderTargetRGBA32F(w, h));
CHECK_GL_ERROR;
}
void sibr::ULRV3Renderer::setupShaders(const std::string & fShader, const std::string & vShader)
{
// Create shaders.
std::cout << "[ULRV3Renderer] Setting up shaders for " << _maxNumCams << " cameras." << std::endl;
GLShader::Define::List defines;
defines.emplace_back("NUM_CAMS", _maxNumCams);
defines.emplace_back("ULR_STREAMING", 0);
_ulrShader.init("ULRV3",
sibr::loadFile(sibr::getShadersDirectory("") + "/" + vShader + ".vert"),
sibr::loadFile(sibr::getShadersDirectory("") + "/" + fShader + ".frag", defines));
_depthShader.init("ULRV3Depth",
sibr::loadFile(sibr::getShadersDirectory("ulr") + "/ulr_intersect.vert"),
sibr::loadFile(sibr::getShadersDirectory("ulr") + "/ulr_intersect.frag", defines));
// Setup uniforms.
_nCamProj.init(_depthShader, "proj");
_nCamPos.init(_ulrShader, "ncam_pos");
_occTest.init(_ulrShader, "occ_test");
_useMasks.init(_ulrShader, "doMasking");
_discardBlackPixels.init(_ulrShader, "discard_black_pixels");
_epsilonOcclusion.init(_ulrShader, "epsilonOcclusion");
_areMasksBinary.init(_ulrShader, "is_binary_mask");
_invertMasks.init(_ulrShader, "invert_mask");
_flipRGBs.init(_ulrShader, "flipRGBs");
_showWeights.init(_ulrShader, "showWeights");
_winnerTakesAll.init(_ulrShader, "winner_takes_all");
_camsCount.init(_ulrShader, "camsCount");
_gammaCorrection.init(_ulrShader, "gammaCorrection");
CHECK_GL_ERROR;
}
void sibr::ULRV3Renderer::process(
const sibr::Mesh & mesh,
const sibr::Camera & eye,
IRenderTarget & dst,
const sibr::Texture2DArrayRGB::Ptr & inputRGBs,
const sibr::Texture2DArrayLum32F::Ptr & inputDepths,
bool passthroughDepth
) {
// Render the proxy positions in world space.
process(mesh, eye, dst, inputRGBs->handle(), inputDepths, passthroughDepth);
}
void sibr::ULRV3Renderer::process(
const sibr::Mesh & mesh,
const sibr::Camera & eye,
IRenderTarget & dst,
uint inputRGBHandle,
const sibr::Texture2DArrayLum32F::Ptr & inputDepths,
bool passthroughDepth
) {
if (_profiling) {
_depthPassTimer.tic();
}
// Render the proxy positions in world space.
renderProxyDepth(mesh, eye);
if (_profiling) {
glFinish();
//std::cout << "\nDepth Pass: " << _depthPassTimer.deltaTimeFromLastTic() << " ms" << std::endl;
_depthCost.push_back(_depthPassTimer.deltaTimeFromLastTic());
}
if (_profiling) {
_blendPassTimer.tic();
}
// Perform ULR blending.
renderBlending(eye, dst, inputRGBHandle, inputDepths, passthroughDepth);
if (_profiling) {
glFinish();
//std::cout << "\nBlend Pass: " << _blendPassTimer.deltaTimeFromLastTic() << " ms" << std::endl;
_blendCost.push_back(_blendPassTimer.deltaTimeFromLastTic());
}
}
void sibr::ULRV3Renderer::updateCameras(const std::vector<uint> & camIds) {
// Reset all cameras.
for(auto & caminfos : _cameraInfos) {
caminfos.selected = 0;
}
// Enabled the ones passed as indices.
for (const auto & camId : camIds) {
_cameraInfos[camId].selected = 1;
}
// Update the content of the UBO.
glBindBuffer(GL_UNIFORM_BUFFER, _uboIndex);
glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(CameraUBOInfos)*_maxNumCams, &_cameraInfos[0]);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
void sibr::ULRV3Renderer::stopProfile()
{
const std::vector<std::string> names = { "Depth Cost: ", "Blend Cost: "};
const std::vector<std::vector<float>> counts = {
_depthCost, _blendCost};
std::string profileStr = "";
//profileStr = "";
for (int i = 0; i < names.size(); ++i) {
// Compute metrics: min, max, avg, variance.
double miniF = std::numeric_limits<double>::max();
double maxiF = 0.0;
double avgF = 0.0;
for (size_t tid = 0; tid < counts[i].size(); ++tid) {
const double ft = double(counts[i][tid]);
avgF += ft;
miniF = std::min(miniF, ft);
maxiF = std::max(maxiF, ft);
}
avgF /= double(counts[i].size());
double varF = 0.0;
for (size_t tid = 0; tid < counts[i].size(); ++tid) {
const double residualF = double(counts[i][tid]) - avgF;
varF += residualF * residualF;
}
varF /= double(int(counts[i].size()) - 1);
profileStr += "-----------\n";
profileStr += names[i] + " num frames: " + std::to_string(counts[i].size()) + "\n";
profileStr += names[i] + " min/max: " + std::to_string(miniF) + "/" + std::to_string(maxiF) + "\n";
profileStr += names[i] + " avg/stddev: " + std::to_string(avgF) + "/" + std::to_string(std::sqrt(varF)) + "\n";
}
std::cout << profileStr << std::endl;
}
void sibr::ULRV3Renderer::renderProxyDepth(const sibr::Mesh & mesh, const sibr::Camera & eye)
{
// Bind and clear RT.
_depthRT->bind();
glViewport(0, 0, _depthRT->w(), _depthRT->h());
glClearColor(0, 0, 0, 1);
glClearDepth(1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Render the mesh from the current viewpoint, output positions.
_depthShader.begin();
_nCamProj.set(eye.viewproj());
mesh.render(true, _backFaceCulling);
_depthShader.end();
_depthRT->unbind();
}
void sibr::ULRV3Renderer::renderBlending(
const sibr::Camera & eye,
IRenderTarget & dst,
uint inputRGBHandle,
const sibr::Texture2DArrayLum32F::Ptr & inputDepths,
bool passthroughDepth
) {
// Bind and clear destination rendertarget.
glViewport(0, 0, dst.w(), dst.h());
if (_clearDst) {
dst.clear();
}
dst.bind();
_ulrShader.begin();
// Uniform values.
_nCamPos.set(eye.position());
_occTest.send();
_areMasksBinary.send();
_invertMasks.send();
_discardBlackPixels.send();
_useMasks.send();
_epsilonOcclusion.send();
_flipRGBs.send();
_showWeights.send();
_camsCount.send();
_winnerTakesAll.send();
_gammaCorrection.send();
// Textures.
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, _depthRT->handle());
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D_ARRAY, inputRGBHandle);
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D_ARRAY, inputDepths->handle());
// Pass the masks if enabled and available.
if (_useMasks && _masks.get()) {
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D_ARRAY, _masks->handle());
}
// Bind UBO to shader, after all possible textures.
glBindBuffer(GL_UNIFORM_BUFFER, _uboIndex);
glBindBufferBase(GL_UNIFORM_BUFFER, 4, _uboIndex);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
if (passthroughDepth) {
glEnable(GL_DEPTH_TEST);
} else {
glDisable(GL_DEPTH_TEST);
}
// Perform ULR rendering.
RenderUtility::renderScreenQuad();
glDisable(GL_DEPTH_TEST);
_ulrShader.end();
dst.unbind();
}
void sibr::ULRV3Renderer::resize(const unsigned w, const unsigned h) {
_depthRT.reset(new sibr::RenderTargetRGBA32F(w, h));
}
|