Spaces:
Running
Running
File size: 1,687 Bytes
4e0ee33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import gradio as gr
from utils import (
authenticate,
split_documents,
build_vectorstore,
retrieve_context,
retrieve_context_approx,
build_prompt,
ask_gemini,
load_documents_gradio, # Import the new function
)
client = authenticate()
store = {"value": None}
def upload_and_process(files):
if files is None:
return "Please upload a file!"
raw_docs = load_documents_gradio(files)
chunks = split_documents(raw_docs)
store["value"] = build_vectorstore(chunks)
return "Document processed successfully! You can now ask questions."
def handle_question(query):
if store["value"] is None:
return "Please upload and process a document first."
if store["value"]["chunks"] <= 50:
top_chunks = retrieve_context(query, store["value"])
else:
top_chunks = retrieve_context_approx(query, store["value"])
prompt = build_prompt(top_chunks, query)
answer = ask_gemini(prompt, client)
return f"### My Insights :\n\n{answer.strip()}"
with gr.Blocks() as demo:
gr.Markdown("## Ask Questions from Your Uploaded Documents")
file_input = gr.File(label="Upload Your File", file_types=['.pdf', '.txt', '.docx', '.csv', '.json', '.pptx', '.xml', '.xlsx'], file_count='multiple')
process_btn = gr.Button("Process Document")
status = gr.Textbox(label="Processing Status")
question = gr.Textbox(label="Ask a Question")
answer = gr.Markdown()
process_btn.click(upload_and_process, inputs=file_input, outputs=status)
question.submit(handle_question, inputs=question, outputs=answer)
demo.launch(share=True) # Or demo.deploy(hf_space="your-username/your-space-name") |