Jofthomas's picture
Update app.py
9cde2c4 verified
raw
history blame
8.6 kB
import os
import gradio as gr
import requests
import inspect # To get source code for __repr__
import pandas as pd
# --- Constants ---
DEFAULT_API_URL = "https://jofthomas-unit4-scoring.hf.space/" # Default URL for your FastAPI app
# --- Basic Agent Definition ---
## This is where you should implement your own agent and tools
class BasicAgent:
"""
A very simple agent placeholder.
It just returns a fixed string for any question.
"""
def __init__(self):
print("BasicAgent initialized.")
# Add any setup if needed
def __call__(self, question: str) -> str:
"""
The agent's logic to answer a question.
This basic version ignores the question content.
"""
print(f"Agent received question (first 50 chars): {question[:50]}...")
# Replace this with actual logic if you were building a real agent
fixed_answer = "This is a default answer."
print(f"Agent returning fixed answer: {fixed_answer}")
return fixed_answer
def __repr__(self) -> str:
"""
Return the source code required to reconstruct this agent.
"""
imports = [
"import inspect\n" # May not be strictly needed by the agent logic itself
]
class_source = inspect.getsource(BasicAgent)
full_source = "\n".join(imports) + "\n" + class_source
return full_source
# --- Gradio UI and Logic ---
def get_current_script_content() -> str:
"""Attempts to read and return the content of the currently running script."""
try:
# __file__ holds the path to the current script
script_path = os.path.abspath(__file__)
print(f"Reading script content from: {script_path}")
with open(script_path, 'r', encoding='utf-8') as f:
return f.read()
except NameError:
# __file__ is not defined (e.g., running in an interactive interpreter)
print("Warning: __file__ is not defined. Cannot read script content.")
return "# Agent code unavailable: __file__ not defined"
except FileNotFoundError:
print(f"Warning: Script file '{script_path}' not found.")
return f"# Agent code unavailable: Script file not found at {script_path}"
except Exception as e:
print(f"Error reading script file '{script_path}': {e}")
return f"# Agent code unavailable: Error reading script file: {e}"
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
if profile:
username= f"{profile.username}"
else:
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate the Agent
try:
agent = BasicAgent()
agent_code = agent.__repr__()
# print(f"Agent Code (first 200): {agent_code[:200]}...") # Debug
except Exception as e:
print(f"Error instantiating agent or getting repr: {e}")
return f"Error initializing agent: {e}", None
agent_code=get_current_script_content()
# 2. Fetch All Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty.", None
print(f"Fetched {len(questions_data)} questions.")
status_update = f"Fetched {len(questions_data)} questions. Running agent..."
# Yield intermediate status if using gr.update
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run Agent on Each Question
results_log = [] # To store data for the results table
answers_payload = [] # To store data for the submission API
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text) # Call the agent's logic
answers_payload.append({
"task_id": task_id,
"submitted_answer": submitted_answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
# Decide how to handle agent errors - skip? submit default?
# Here, we'll just log and potentially skip submission for this task if needed
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers..."
print(status_update)
# 5. Submit to Leaderboard
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=45) # Increased timeout
response.raise_for_status()
result_data = response.json()
# Prepare final status message and results table
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score')}% "
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')} correct)\n"
f"Message: {result_data.get('message')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = e.response.text
try:
error_json = e.response.json()
error_detail = error_json.get('detail', error_detail)
except requests.exceptions.JSONDecodeError:
pass
status_message = f"Submission Failed (HTTP {e.response.status_code}): {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log) # Show attempts even if submission failed
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"Please clone this space, then modify the code to what you deem relevant."
"Connect to your Hugging Face account using the log in button in the space to use your username, then click Run. "
"This will fetch all questions, run the *very basic* agent on them, "
"submit all answers at once, and display the results."
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=4, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
# --- Component Interaction ---
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True)