Spaces:
Running
Running
File size: 8,033 Bytes
9b5b26a c19d193 6aae614 8fe992b 9b5b26a 00640e3 7f95535 6bab3bb 9b5b26a 58e6ca4 a1a9cfa 963ee42 5df72d6 9b5b26a 3d1237b 9b5b26a 00640e3 1eaed3f 00640e3 0be848d 2273f2d 00640e3 a026291 00640e3 7f95535 00640e3 7f95535 9ca5a14 7f95535 a026291 7f95535 f186791 7f95535 6bab3bb 7f95535 0be848d ec367e7 83e96b7 0be848d 7f95535 8b73493 7f95535 ec367e7 83e96b7 7f95535 0be848d 7f95535 00640e3 9b5b26a 01d6ce7 f50d9b5 01d6ce7 154ba0d f50d9b5 01d6ce7 9ca5a14 42c57d5 7a28cf7 42c57d5 751d16f 5fc1ab6 769a4cd 33da7c6 5fc1ab6 6aae614 ae7a494 e121372 c9101c1 a8f49c9 3a66737 bf6d34c 3a66737 bcf7ee3 3a66737 bcf7ee3 fe328e0 13d500a 8c01ffb 9b5b26a 8c01ffb 861422e 9b5b26a 8c01ffb 8fe992b a026291 01d6ce7 33da7c6 8c01ffb 861422e 8fe992b 9b5b26a 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
import requests
from bs4 import BeautifulSoup
import json
from tools.visit_webpage import VisitWebpageTool
# Trying to fix an error I was getting:
import re
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
"""A tool that does nothing yet
Args:
arg1: the first argument
arg2: the second argument
"""
return "What magic will you build ?"
# Creating an example function to get data from a website of my choice
@tool
def webpage_contents_get(url:str, headers_in: dict = None)-> bytes: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
"""A simple function to grab contents of a webpage. As this is very long and not easily interpretable,
summaries based on other tools applied to this content should be returned to users with questions.
Printing the value returned from this function is not acceptable.
Args:
url: The URL the contents of which the tool will get
headers_in: A dictionary which defines the headers for the request. Defaults to None
"""
response = requests.get(url, headers = headers_in)
#html_content = response.text
return response.content
@tool
def webpage_header_get(url:str)-> dict: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
"""A simple function to grab header of a webpage. Can be passed into webpage_contents_get if desired.
Args:
url: string The URL the contents of which the tool will get
"""
response = requests.get(url)
return response.headers
@tool
def webpage_json_get(url:str)-> json: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
"""A simple function to grab json formatted data from a webpage.
Args:
url: string The URL the contents of which the tool will get
"""
response = requests.get(url)
return response.json()
@tool
def webpage_contents_soup_paragraphs(response_content:bytes)->list:
'''
This function will find all paragraphs in the response.content from the webpage_contents_get tool
Since this can be long, it is best to search this text for more concise summaries to return.
Args:
response_content: response.content value returned by webpage_contents_get tool.
'''
soup = BeautifulSoup(response_content, "html.parser")
list_ret = list()
for paragraph in soup.find_all("p"):
ret_t = paragraph.text
#print(link.get("href"))
list_ret.append(ret_t)
return list_ret
@tool
def webpage_contents_soup_links(response_content:bytes)->list:
'''
This function will find all links in the response.content from the webpage_contents_get tool
Args:
response_content: response.content value returned by webpage_contents_get tool.
'''
soup = BeautifulSoup(response_content, "html.parser")
list_ret = list()
for link in soup.find_all("a"):
ret_t = link.get("href")
list_ret.append(ret_t)
return list_ret
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
@tool
def summarize_and_answer_from_web(url: str, question:str) -> str:
'''
A tool which takes a pair of inputs, a website and a question, and finds all relevant information
about that question from the website, and return both the summary and the answer.
Adjusted the code to only return the answer, to avoid errors in application by the agent.
Args:
url: a string which says which website to get information from
question: a string of text asking for information from that website
'''
# Get the webpage content
webpage_content = webpage_contents_get(url=url)
# Get links from the webpage content
links = webpage_contents_soup_links(response_content=webpage_content)
# Get paragraphs from the webpage content
paragraphs = webpage_contents_soup_paragraphs(response_content=webpage_content)
# Combine the extracted information into a summary
summary = f"Title: {paragraphs[0] if paragraphs else 'No title found'}\\n\\nHeadings:\\n"
headings = [para for para in paragraphs if len(para.split()) < 15] # Heuristic for headings
if headings:
for heading in headings:
summary += f"- {heading}\\n"
else:
summary += "No headings found.\\n"
summary += "\\nParagraphs:\\n"
for para in paragraphs:
summary += f"- {para}\\n"
summary += "\\nLinks:\\n"
for link in links:
summary += f"- {link}\\n"
# Answer the question based on the summary
# Simple heuristic: check if the question is in any of the paragraphs
answer = "No specific answer found."
for para in paragraphs:
if question.lower() in para.lower():
answer = para
break
return summary, answer
#return answer
@tool
def tool_visit_webpage(url:str) -> str:
'''
A tool used to visit a webpage, and return the appropriate information from it
Args:
url: A string url, the site to be visited
'''
import re
vst = VisitWebpageTool()
ret = vst(url)
return ret
@tool
def duckduckgo_search_tool(query:str) -> str:
'''
A tool used to initialize the ddg search tool, and to return the top 10 finings
Args:
query: A string to pass to duckduckgo
'''
ddg = DuckDuckGoSearchTool()
ret = ddg(query)
return ret
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
#max_tokens=2096,
max_tokens=8000,
#max_tokens=256,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
#model_id='Qwen/Qwen2.5-Coder-1.5B-Instruct',# it is possible that this model may be overloaded
#model_id='meta-llama/Llama-3.2-1B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer, image_generation_tool,webpage_contents_get,
webpage_header_get, webpage_contents_soup_links, webpage_contents_soup_paragraphs,
summarize_and_answer_from_web, webpage_json_get, tool_visit_webpage,
duckduckgo_search_tool], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch() |