kcarnold commited on
Commit
a4e470c
Β·
2 Parent(s): b35561c 18ddc73

Merge remote-tracking branch 'origin/main'

Browse files
Files changed (2) hide show
  1. app.py +8 -6
  2. simplified.py +181 -0
app.py CHANGED
@@ -11,6 +11,7 @@ def landing():
11
  st.page_link(highlight_page, label="Highlight locations for possible edits", icon="πŸ–οΈ")
12
  #st.page_link(generate_page, label="Generate revisions", icon="πŸ”„")
13
  st.page_link(type_assistant_response_page, label="Type Assistant Response", icon="πŸ”€")
 
14
 
15
  st.markdown("*Note*: These services send data to a remote server for processing. The server logs requests. Don't use sensitive or identifiable information on this page.")
16
 
@@ -408,17 +409,18 @@ const makeElt = (tag, attrs, children) => {
408
  <script>allLogprobs = {json.dumps(logprobs)};
409
 
410
  {show_logprob_js}
411
- showLogprobs(allLogprobs.length - 1);
 
412
  </script>
413
  """
414
  import streamlit.components.v1 as components
415
  return components.html(html_out, height=300, scrolling=True)
416
 
417
- rewrite_page = st.Page(rewrite_with_predictions, title="Rewrite with predictions", icon="πŸ“")
418
- highlight_page = st.Page(highlight_edits, title="Highlight locations for possible edits", icon="πŸ–οΈ")
419
- #generate_page = st.Page(generate_revisions, title="Generate revisions", icon="πŸ”„")
420
- type_assistant_response_page = st.Page(type_assistant_response, title="Type Assistant Response", icon="πŸ”€")
421
- show_internals_page = st.Page(show_internals, title="Show Internals", icon="πŸ”§")
422
 
423
  # Manually specify the sidebar
424
  page = st.navigation([
 
11
  st.page_link(highlight_page, label="Highlight locations for possible edits", icon="πŸ–οΈ")
12
  #st.page_link(generate_page, label="Generate revisions", icon="πŸ”„")
13
  st.page_link(type_assistant_response_page, label="Type Assistant Response", icon="πŸ”€")
14
+ st.page_link(show_internals_page, label="Show Internals", icon="πŸ”§")
15
 
16
  st.markdown("*Note*: These services send data to a remote server for processing. The server logs requests. Don't use sensitive or identifiable information on this page.")
17
 
 
409
  <script>allLogprobs = {json.dumps(logprobs)};
410
 
411
  {show_logprob_js}
412
+
413
+ //showLogprobs(allLogprobs.length - 1);
414
  </script>
415
  """
416
  import streamlit.components.v1 as components
417
  return components.html(html_out, height=300, scrolling=True)
418
 
419
+ rewrite_page = st.Page(rewrite_with_predictions, title="Rewrite with predictions", icon="πŸ“", url_path="rewrite")
420
+ highlight_page = st.Page(highlight_edits, title="Highlight locations for possible edits", icon="πŸ–οΈ", url_path="highlights")
421
+ #generate_page = st.Page(generate_revisions, title="Generate revisions", icon="πŸ”„", url_path="generate")
422
+ type_assistant_response_page = st.Page(type_assistant_response, title="Type Assistant Response", icon="πŸ”€", url_path="type_assistant_response")
423
+ show_internals_page = st.Page(show_internals, title="Show Internals", icon="πŸ”§", url_path="internals")
424
 
425
  # Manually specify the sidebar
426
  page = st.navigation([
simplified.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
+ from transformers import DynamicCache
5
+
6
+ USE_GPU = torch.cuda.is_available()
7
+
8
+ @st.cache_resource
9
+ def load_model():
10
+ import torch
11
+
12
+ model_name = 'google/gemma-2-9b-it'
13
+
14
+ dtype = torch.bfloat16 if USE_GPU else torch.float16
15
+
16
+ llm = {
17
+ 'tokenizer': AutoTokenizer.from_pretrained(model_name),
18
+ 'model': AutoModelForCausalLM.from_pretrained(
19
+ model_name,
20
+ device_map="auto" if USE_GPU else "cpu",
21
+ torch_dtype=dtype,
22
+ attn_implementation='eager'
23
+ )
24
+ }
25
+ llm['model'].eval()
26
+ return llm
27
+
28
+
29
+
30
+ def type_assistant_response():
31
+ if 'messages' not in st.session_state or st.button("Start a new conversation"):
32
+ st.session_state['messages'] = [{"role": "user", "content": ""}]
33
+ st.session_state['msg_in_progress'] = ""
34
+ messages = st.session_state.messages
35
+
36
+ def rewind_to(i):
37
+ st.session_state.messages = st.session_state.messages[:i+1]
38
+ st.session_state['msg_in_progress'] = st.session_state.messages[-1]['content']
39
+
40
+ for i, message in enumerate(st.session_state.messages[:-1]):
41
+ with st.chat_message(message["role"]):
42
+ st.markdown(message["content"])
43
+ st.button("Edit", on_click=rewind_to, args=(i,), key=f"rewind_to_{i}")
44
+
45
+ # Display message-in-progress in chat message container
46
+ last_role = messages[-1]["role"]
47
+ with st.chat_message(last_role):
48
+ label = "Your message" if last_role == "user" else "Assistant response"
49
+ msg_in_progress = st.text_area(label, placeholder="Clicking the buttons below will update this field. You can also edit it directly; press Ctrl+Enter to apply changes.", height=300, key="msg_in_progress")
50
+ if msg_in_progress is None:
51
+ msg_in_progress = ""
52
+
53
+ messages[-1]['content'] = msg_in_progress
54
+
55
+ def append_token(word):
56
+ messages[-1]['content'] = st.session_state['msg_in_progress'] = (
57
+ msg_in_progress + word
58
+ )
59
+
60
+ allow_multi_word = st.checkbox("Allow multi-word predictions", value=False)
61
+
62
+ response = continue_messages(
63
+ messages=messages,
64
+ n_branch_tokens=5,
65
+ n_future_tokens=2
66
+ )
67
+
68
+ continuations = response['continuations']
69
+ for i, (col, continuation) in enumerate(zip(st.columns(len(continuations)), continuations)):
70
+ token = continuation['doc_text']
71
+ with col:
72
+ if not allow_multi_word and ' ' in token[1:]:
73
+ token = token[0] + token[1:].split(' ', 1)[0]
74
+
75
+ # if not allow_multi_word:
76
+ # import re
77
+ # split_result = re.split(r'(\s+)', token, maxsplit=1)
78
+ # assert len(split_result) == 3
79
+ # before_ws, token, after_ws = split_result
80
+ # print(repr(split_result))
81
+ # if before_ws != '':
82
+ # token = before_ws
83
+ token_display = show_token(token)
84
+ st.button(token_display, on_click=append_token, args=(token,), key=i, use_container_width=True)
85
+
86
+ def send_message():
87
+ other_role = "assistant" if last_role == "user" else "user"
88
+ st.session_state['messages'].append({"role": other_role, "content": ""})
89
+ st.session_state['msg_in_progress'] = ""
90
+ st.button("Send", on_click=send_message)
91
+
92
+ def show_token(token: str, escape_markdown=True) -> str:
93
+ token_display = token.replace('\n', '↡').replace('\t', 'β‡₯')
94
+ if escape_markdown:
95
+ for c in "\\`*_{}[]()#+-.!":
96
+ token_display = token_display.replace(c, "\\" + c)
97
+ return token_display
98
+
99
+
100
+ def continue_messages(messages, n_branch_tokens, n_future_tokens):
101
+
102
+ messages = [{"role": m.role, "content": m.content} for m in messages]
103
+ if len(messages) == 0:
104
+ raise ValueError("At least one message must be provided.")
105
+
106
+ llm = load_model()
107
+ model = llm['model']
108
+ tokenizer = llm['tokenizer']
109
+
110
+ generated_docs = continue_messages_inner(model, tokenizer, messages, n_branch_tokens, n_future_tokens)
111
+
112
+ return {
113
+ 'continuations': [dict(doc_text=doc) for doc in generated_docs]
114
+ }
115
+
116
+
117
+ def get_lookahead_sequences(model, tokenizer, hypotheses, n_branch_tokens, device):
118
+ """
119
+ For each of the n_branch_tokens next tokens, generate most-likely next tokens and append back on.
120
+ """
121
+ assert len(hypotheses.shape) == 2
122
+ assert hypotheses.shape[0] == 1
123
+ n_tokens_so_far = hypotheses.shape[1]
124
+ past_key_values = DynamicCache()
125
+
126
+ with torch.no_grad():
127
+ model_outs_onestep = model(hypotheses, output_hidden_states=True, past_key_values=past_key_values)
128
+
129
+ branch_tokens = model_outs_onestep.logits[0, -1].topk(n_branch_tokens).indices
130
+
131
+ # split the cache into n_branch_tokens reps. We pretend we're doing a "Beam search"...
132
+ past_key_values.reorder_cache(torch.zeros((n_branch_tokens,), dtype=torch.long, device=device))
133
+
134
+ # Now call the model again, passing the kv cache, so we can continue generating.
135
+ # Each of the n_branch_tokens next tokens will be considered as one sequence in a "batch".
136
+ next_tokens_as_batch = branch_tokens.unsqueeze(1)
137
+ assert next_tokens_as_batch.shape == (n_branch_tokens, 1)
138
+
139
+ position_id_for_final_token = n_tokens_so_far
140
+ cache_position = torch.full((1,), position_id_for_final_token, dtype=int, device=device)
141
+ with torch.no_grad():
142
+ model_outs = model(
143
+ next_tokens_as_batch,
144
+ past_key_values=past_key_values,
145
+ output_hidden_states=True,
146
+ use_cache=True,
147
+ # the cache surprisingly doesn't know the position of the last token
148
+ cache_position=cache_position
149
+ )
150
+
151
+ # Grab the single most likely token from each of the n_branch_tokens sequences
152
+ next_token_logits = model_outs.logits[:, -1]
153
+ vocab_size = model.config.vocab_size
154
+ assert next_token_logits.shape == (n_branch_tokens, vocab_size), f"{next_token_logits.shape=}, {n_branch_tokens=}, {vocab_size=}"
155
+ most_likely_token_ids = next_token_logits.argmax(dim=-1)
156
+
157
+ # Stick them at the end of the branch tokens.
158
+ assert most_likely_token_ids.shape == (n_branch_tokens,)
159
+ lookahead_sequences = torch.cat([
160
+ branch_tokens.unsqueeze(1),
161
+ most_likely_token_ids.unsqueeze(1)
162
+ ], dim=1)
163
+ assert lookahead_sequences.shape == (n_branch_tokens, 2)
164
+ return lookahead_sequences, next_token_logits
165
+
166
+
167
+ def continue_messages_inner(model, tokenizer, messages, n_branch_tokens, n_future_tokens):
168
+ # Note: we're ignoring n_future_tokens right now since the old implementation was buggy.
169
+ device = model.device
170
+
171
+ tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt", continue_final_message=True).to(model.device)
172
+ print(tokenizer.batch_decode(tokenized_chat, skip_special_tokens=False))
173
+
174
+ lookahead_sequences, next_token_logits = get_lookahead_sequences(
175
+ model, tokenizer, tokenized_chat, n_branch_tokens, device)
176
+
177
+ generated_docs = tokenizer.batch_decode(lookahead_sequences, skip_special_tokens=True)
178
+ return generated_docs
179
+
180
+ type_assistant_response()
181
+