Spaces:
Sleeping
Sleeping
Upload resnet50_classification.py
Browse files- resnet50_classification.py +63 -0
resnet50_classification.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from tensorflow.keras.applications import ResNet50
|
3 |
+
from tensorflow.keras.preprocessing import image
|
4 |
+
from tensorflow.keras.applications.resnet50 import preprocess_input
|
5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Load the pre-trained ResNet50 model
|
9 |
+
model = ResNet50(weights='imagenet', include_top=False, pooling='avg')
|
10 |
+
|
11 |
+
|
12 |
+
# Function to extract feature vector from an image
|
13 |
+
def extract_features(img_path, model):
|
14 |
+
img = image.load_img(img_path, target_size=(224, 224))
|
15 |
+
img_data = image.img_to_array(img)
|
16 |
+
img_data = np.expand_dims(img_data, axis=0)
|
17 |
+
img_data = preprocess_input(img_data)
|
18 |
+
features = model.predict(img_data)
|
19 |
+
return features.flatten()
|
20 |
+
|
21 |
+
|
22 |
+
# Directory containing images
|
23 |
+
image_dir = './images/forward_facing'
|
24 |
+
|
25 |
+
# Extract features for all images
|
26 |
+
image_features = {}
|
27 |
+
for img_file in os.listdir(image_dir):
|
28 |
+
img_path = os.path.join(image_dir, img_file)
|
29 |
+
features = extract_features(img_path, model)
|
30 |
+
image_features[img_file] = features
|
31 |
+
|
32 |
+
# Convert feature dictionary to list for processing
|
33 |
+
feature_list = list(image_features.values())
|
34 |
+
file_list = list(image_features.keys())
|
35 |
+
|
36 |
+
# Calculate similarities
|
37 |
+
num_images = len(file_list)
|
38 |
+
similarity_matrix = np.zeros((num_images, num_images))
|
39 |
+
|
40 |
+
for i in range(num_images):
|
41 |
+
for j in range(i, num_images):
|
42 |
+
if i != j:
|
43 |
+
similarity = cosine_similarity(
|
44 |
+
[feature_list[i]],
|
45 |
+
[feature_list[j]]
|
46 |
+
)[0][0]
|
47 |
+
similarity_matrix[i][j] = similarity
|
48 |
+
similarity_matrix[j][i] = similarity
|
49 |
+
|
50 |
+
# Identify and remove duplicates
|
51 |
+
threshold = 0.9 # Similarity threshold for duplicates
|
52 |
+
duplicates = set()
|
53 |
+
for i in range(num_images):
|
54 |
+
for j in range(i + 1, num_images):
|
55 |
+
if similarity_matrix[i][j] > threshold:
|
56 |
+
duplicates.add(file_list[j])
|
57 |
+
|
58 |
+
# Remove duplicates
|
59 |
+
# for duplicate in duplicates:
|
60 |
+
# os.remove(os.path.join(image_dir, duplicate))
|
61 |
+
print("Duplicate Images No => ", len(duplicates))
|
62 |
+
|
63 |
+
# print(f"Removed {len(duplicates)} duplicate images.")
|