|
|
|
""" |
|
This script runs a Gradio App for the Open-Sora model. |
|
|
|
Usage: |
|
python demo.py <config-path> |
|
""" |
|
|
|
import argparse |
|
import importlib |
|
import os |
|
import subprocess |
|
import sys |
|
import re |
|
import json |
|
import math |
|
|
|
import spaces |
|
import torch |
|
|
|
import gradio as gr |
|
from tempfile import NamedTemporaryFile |
|
import datetime |
|
|
|
|
|
|
|
MODEL_TYPES = ["v1.1-stage2", "v1.1-stage3"] |
|
CONFIG_MAP = { |
|
"v1.1-stage2": "configs/opensora-v1-1/inference/sample-ref.py", |
|
"v1.1-stage3": "configs/opensora-v1-1/inference/sample-ref.py", |
|
} |
|
HF_STDIT_MAP = { |
|
"v1.1-stage2": "hpcai-tech/OpenSora-STDiT-v2-stage2", |
|
"v1.1-stage3": "hpcai-tech/OpenSora-STDiT-v2-stage3", |
|
} |
|
RESOLUTION_MAP = { |
|
"144p": { |
|
"16:9": (256, 144), |
|
"9:16": (144, 256), |
|
"4:3": (221, 165), |
|
"3:4": (165, 221), |
|
"1:1": (192, 192), |
|
}, |
|
"240p": { |
|
"16:9": (426, 240), |
|
"9:16": (240, 426), |
|
"4:3": (370, 278), |
|
"3:4": (278, 370), |
|
"1:1": (320, 320), |
|
}, |
|
"360p": { |
|
"16:9": (640, 360), |
|
"9:16": (360, 640), |
|
"4:3": (554, 416), |
|
"3:4": (416, 554), |
|
"1:1": (480, 480), |
|
}, |
|
"480p": { |
|
"16:9": (854, 480), |
|
"9:16": (480, 854), |
|
"4:3": (740, 555), |
|
"3:4": (555, 740), |
|
"1:1": (640, 640), |
|
}, |
|
"720p": { |
|
"16:9": (1280, 720), |
|
"9:16": (720, 1280), |
|
"4:3": (1108, 832), |
|
"3:4": (832, 1110), |
|
"1:1": (960, 960), |
|
}, |
|
} |
|
|
|
|
|
|
|
|
|
|
|
def collect_references_batch(reference_paths, vae, image_size): |
|
from opensora.datasets.utils import read_from_path |
|
|
|
refs_x = [] |
|
for reference_path in reference_paths: |
|
if reference_path is None: |
|
refs_x.append([]) |
|
continue |
|
ref_path = reference_path.split(";") |
|
ref = [] |
|
for r_path in ref_path: |
|
r = read_from_path(r_path, image_size, transform_name="resize_crop") |
|
r_x = vae.encode(r.unsqueeze(0).to(vae.device, vae.dtype)) |
|
r_x = r_x.squeeze(0) |
|
ref.append(r_x) |
|
refs_x.append(ref) |
|
|
|
return refs_x |
|
|
|
|
|
def process_mask_strategy(mask_strategy): |
|
mask_batch = [] |
|
mask_strategy = mask_strategy.split(";") |
|
for mask in mask_strategy: |
|
mask_group = mask.split(",") |
|
assert len(mask_group) >= 1 and len(mask_group) <= 6, f"Invalid mask strategy: {mask}" |
|
if len(mask_group) == 1: |
|
mask_group.extend(["0", "0", "0", "1", "0"]) |
|
elif len(mask_group) == 2: |
|
mask_group.extend(["0", "0", "1", "0"]) |
|
elif len(mask_group) == 3: |
|
mask_group.extend(["0", "1", "0"]) |
|
elif len(mask_group) == 4: |
|
mask_group.extend(["1", "0"]) |
|
elif len(mask_group) == 5: |
|
mask_group.append("0") |
|
mask_batch.append(mask_group) |
|
return mask_batch |
|
|
|
|
|
def apply_mask_strategy(z, refs_x, mask_strategys, loop_i): |
|
masks = [] |
|
for i, mask_strategy in enumerate(mask_strategys): |
|
mask = torch.ones(z.shape[2], dtype=torch.float, device=z.device) |
|
if mask_strategy is None: |
|
masks.append(mask) |
|
continue |
|
mask_strategy = process_mask_strategy(mask_strategy) |
|
for mst in mask_strategy: |
|
loop_id, m_id, m_ref_start, m_target_start, m_length, edit_ratio = mst |
|
loop_id = int(loop_id) |
|
if loop_id != loop_i: |
|
continue |
|
m_id = int(m_id) |
|
m_ref_start = int(m_ref_start) |
|
m_length = int(m_length) |
|
m_target_start = int(m_target_start) |
|
edit_ratio = float(edit_ratio) |
|
ref = refs_x[i][m_id] |
|
if m_ref_start < 0: |
|
m_ref_start = ref.shape[1] + m_ref_start |
|
if m_target_start < 0: |
|
|
|
m_target_start = z.shape[2] + m_target_start |
|
z[i, :, m_target_start : m_target_start + m_length] = ref[:, m_ref_start : m_ref_start + m_length] |
|
mask[m_target_start : m_target_start + m_length] = edit_ratio |
|
masks.append(mask) |
|
masks = torch.stack(masks) |
|
return masks |
|
|
|
|
|
def process_prompts(prompts, num_loop): |
|
from opensora.models.text_encoder.t5 import text_preprocessing |
|
|
|
ret_prompts = [] |
|
for prompt in prompts: |
|
if prompt.startswith("|0|"): |
|
prompt_list = prompt.split("|")[1:] |
|
text_list = [] |
|
for i in range(0, len(prompt_list), 2): |
|
start_loop = int(prompt_list[i]) |
|
text = prompt_list[i + 1] |
|
text = text_preprocessing(text) |
|
end_loop = int(prompt_list[i + 2]) if i + 2 < len(prompt_list) else num_loop |
|
text_list.extend([text] * (end_loop - start_loop)) |
|
assert len(text_list) == num_loop, f"Prompt loop mismatch: {len(text_list)} != {num_loop}" |
|
ret_prompts.append(text_list) |
|
else: |
|
prompt = text_preprocessing(prompt) |
|
ret_prompts.append([prompt] * num_loop) |
|
return ret_prompts |
|
|
|
|
|
def extract_json_from_prompts(prompts): |
|
additional_infos = [] |
|
ret_prompts = [] |
|
for prompt in prompts: |
|
parts = re.split(r"(?=[{\[])", prompt) |
|
assert len(parts) <= 2, f"Invalid prompt: {prompt}" |
|
ret_prompts.append(parts[0]) |
|
if len(parts) == 1: |
|
additional_infos.append({}) |
|
else: |
|
additional_infos.append(json.loads(parts[1])) |
|
return ret_prompts, additional_infos |
|
|
|
|
|
|
|
|
|
|
|
def install_dependencies(enable_optimization=False): |
|
""" |
|
Install the required dependencies for the demo if they are not already installed. |
|
""" |
|
|
|
def _is_package_available(name) -> bool: |
|
try: |
|
importlib.import_module(name) |
|
return True |
|
except (ImportError, ModuleNotFoundError): |
|
return False |
|
|
|
|
|
|
|
|
|
if not _is_package_available("flash_attn"): |
|
subprocess.run( |
|
f"{sys.executable} -m pip install flash-attn --no-build-isolation", |
|
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, |
|
shell=True, |
|
) |
|
|
|
if enable_optimization: |
|
|
|
if not _is_package_available("apex"): |
|
subprocess.run( |
|
f'{sys.executable} -m pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/NVIDIA/apex.git', |
|
shell=True, |
|
) |
|
|
|
|
|
if not _is_package_available("ninja"): |
|
subprocess.run(f"{sys.executable} -m pip install ninja", shell=True) |
|
|
|
|
|
if not _is_package_available("xformers"): |
|
subprocess.run( |
|
f"{sys.executable} -m pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers", |
|
shell=True, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def read_config(config_path): |
|
""" |
|
Read the configuration file. |
|
""" |
|
from mmengine.config import Config |
|
|
|
return Config.fromfile(config_path) |
|
|
|
|
|
def build_models(model_type, config, enable_optimization=False): |
|
""" |
|
Build the models for the given model type and configuration. |
|
""" |
|
|
|
from opensora.registry import MODELS, build_module |
|
|
|
vae = build_module(config.vae, MODELS).cuda() |
|
|
|
|
|
text_encoder = build_module(config.text_encoder, MODELS) |
|
text_encoder.t5.model = text_encoder.t5.model.cuda() |
|
|
|
|
|
|
|
|
|
from opensora.models.stdit.stdit2 import STDiT2 |
|
|
|
stdit = STDiT2.from_pretrained( |
|
HF_STDIT_MAP[model_type], |
|
enable_flash_attn=enable_optimization, |
|
trust_remote_code=True, |
|
).cuda() |
|
|
|
|
|
from opensora.registry import SCHEDULERS |
|
|
|
scheduler = build_module(config.scheduler, SCHEDULERS) |
|
|
|
|
|
text_encoder.y_embedder = stdit.y_embedder |
|
|
|
|
|
vae = vae.to(torch.bfloat16).eval() |
|
text_encoder.t5.model = text_encoder.t5.model.eval() |
|
stdit = stdit.to(torch.bfloat16).eval() |
|
|
|
|
|
torch.cuda.empty_cache() |
|
return vae, text_encoder, stdit, scheduler |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--model-type", |
|
default="v1.1-stage3", |
|
choices=MODEL_TYPES, |
|
help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}", |
|
) |
|
parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder") |
|
parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.") |
|
parser.add_argument("--host", default=None, type=str, help="The host to run the Gradio App on.") |
|
parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.") |
|
parser.add_argument( |
|
"--enable-optimization", |
|
action="store_true", |
|
help="Whether to enable optimization such as flash attention and fused layernorm", |
|
) |
|
return parser.parse_args() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
args = parse_args() |
|
config = read_config(CONFIG_MAP[args.model_type]) |
|
|
|
|
|
os.makedirs(args.output, exist_ok=True) |
|
|
|
|
|
|
|
torch.jit._state.disable() |
|
|
|
|
|
install_dependencies(enable_optimization=args.enable_optimization) |
|
|
|
|
|
from opensora.datasets import IMG_FPS, save_sample |
|
from opensora.utils.misc import to_torch_dtype |
|
|
|
|
|
dtype = to_torch_dtype(config.dtype) |
|
device = torch.device("cuda") |
|
|
|
|
|
vae, text_encoder, stdit, scheduler = build_models(args.model_type, config, enable_optimization=args.enable_optimization) |
|
|
|
|
|
def run_inference(mode, prompt_text, resolution, aspect_ratio, length, reference_image, seed, sampling_steps, cfg_scale): |
|
torch.manual_seed(seed) |
|
with torch.inference_mode(): |
|
|
|
|
|
|
|
|
|
resolution = RESOLUTION_MAP[resolution][aspect_ratio] |
|
|
|
|
|
num_frames = config.num_frames |
|
frame_interval = config.frame_interval |
|
fps = config.fps |
|
condition_frame_length = config.condition_frame_length |
|
|
|
|
|
if mode == "Text2Image": |
|
num_frames = 1 |
|
num_loop = 1 |
|
else: |
|
num_seconds = int(length.rstrip('s')) |
|
if num_seconds <= 16: |
|
num_frames = num_seconds * fps // frame_interval |
|
num_loop = 1 |
|
else: |
|
config.num_frames = 16 |
|
total_number_of_frames = num_seconds * fps / frame_interval |
|
num_loop = math.ceil((total_number_of_frames - condition_frame_length) / (num_frames - condition_frame_length)) |
|
|
|
|
|
if config.num_frames == 1: |
|
fps = IMG_FPS |
|
|
|
model_args = dict() |
|
height_tensor = torch.tensor([resolution[0]], device=device, dtype=dtype) |
|
width_tensor = torch.tensor([resolution[1]], device=device, dtype=dtype) |
|
num_frames_tensor = torch.tensor([num_frames], device=device, dtype=dtype) |
|
ar_tensor = torch.tensor([resolution[0] / resolution[1]], device=device, dtype=dtype) |
|
fps_tensor = torch.tensor([fps], device=device, dtype=dtype) |
|
model_args["height"] = height_tensor |
|
model_args["width"] = width_tensor |
|
model_args["num_frames"] = num_frames_tensor |
|
model_args["ar"] = ar_tensor |
|
model_args["fps"] = fps_tensor |
|
|
|
|
|
input_size = (num_frames, *resolution) |
|
latent_size = vae.get_latent_size(input_size) |
|
|
|
|
|
prompt_raw = [prompt_text] |
|
prompt_raw, _ = extract_json_from_prompts(prompt_raw) |
|
prompt_loops = process_prompts(prompt_raw, num_loop) |
|
video_clips = [] |
|
|
|
|
|
if mode == "Text2Image": |
|
mask_strategy = [None] |
|
elif mode == "Text2Video": |
|
if reference_image is not None: |
|
mask_strategy = ['0'] |
|
else: |
|
mask_strategy = [None] |
|
else: |
|
raise ValueError(f"Invalid mode: {mode}") |
|
|
|
|
|
|
|
|
|
if mode == "Text2Image": |
|
refs_x = collect_references_batch([None], vae, resolution) |
|
elif mode == "Text2Video": |
|
if reference_image is not None: |
|
|
|
from PIL import Image |
|
im = Image.fromarray(reference_image) |
|
|
|
with NamedTemporaryFile(suffix=".jpg") as temp_file: |
|
im.save(temp_file.name) |
|
refs_x = collect_references_batch([temp_file.name], vae, resolution) |
|
else: |
|
refs_x = collect_references_batch([None], vae, resolution) |
|
else: |
|
raise ValueError(f"Invalid mode: {mode}") |
|
|
|
|
|
for loop_i in range(num_loop): |
|
|
|
batch_prompts = [prompt[loop_i] for prompt in prompt_loops] |
|
z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype) |
|
|
|
|
|
masks = None |
|
|
|
|
|
if loop_i > 0: |
|
ref_x = vae.encode(video_clips[-1]) |
|
for j, refs in enumerate(refs_x): |
|
if refs is None: |
|
refs_x[j] = [ref_x[j]] |
|
else: |
|
refs.append(ref_x[j]) |
|
if mask_strategy[j] is None: |
|
mask_strategy[j] = "" |
|
else: |
|
mask_strategy[j] += ";" |
|
mask_strategy[ |
|
j |
|
] += f"{loop_i},{len(refs)-1},-{condition_frame_length},0,{condition_frame_length}" |
|
|
|
masks = apply_mask_strategy(z, refs_x, mask_strategy, loop_i) |
|
|
|
|
|
|
|
scheduler_kwargs = config.scheduler.copy() |
|
scheduler_kwargs.pop('type') |
|
scheduler_kwargs['num_sampling_steps'] = sampling_steps |
|
scheduler_kwargs['cfg_scale'] = cfg_scale |
|
|
|
scheduler.__init__( |
|
**scheduler_kwargs |
|
) |
|
samples = scheduler.sample( |
|
stdit, |
|
text_encoder, |
|
z=z, |
|
prompts=batch_prompts, |
|
device=device, |
|
additional_args=model_args, |
|
mask=masks, |
|
) |
|
samples = vae.decode(samples.to(dtype)) |
|
video_clips.append(samples) |
|
|
|
|
|
if loop_i == num_loop - 1: |
|
video_clips_list = [ |
|
video_clips[0][0]] + [video_clips[i][0][:, config.condition_frame_length :] |
|
for i in range(1, num_loop) |
|
] |
|
video = torch.cat(video_clips_list, dim=1) |
|
current_datetime = datetime.datetime.now() |
|
timestamp = current_datetime.timestamp() |
|
save_path = os.path.join(args.output, f"output_{timestamp}") |
|
saved_path = save_sample(video, save_path=save_path, fps=config.fps // config.frame_interval) |
|
return saved_path |
|
|
|
@spaces.GPU(duration=200) |
|
def run_image_inference(prompt_text, resolution, aspect_ratio, length, reference_image, seed, sampling_steps, cfg_scale): |
|
return run_inference("Text2Image", prompt_text, resolution, aspect_ratio, length, reference_image, seed, sampling_steps, cfg_scale) |
|
|
|
@spaces.GPU(duration=200) |
|
def run_video_inference(prompt_text, resolution, aspect_ratio, length, reference_image, seed, sampling_steps, cfg_scale): |
|
return run_inference("Text2Video", prompt_text, resolution, aspect_ratio, length, reference_image, seed, sampling_steps, cfg_scale) |
|
|
|
|
|
def main(): |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.HTML( |
|
""" |
|
<div style='text-align: center;'> |
|
<p align="center"> |
|
<img src="https://github.com/hpcaitech/Open-Sora/raw/main/assets/readme/icon.png" width="250"/> |
|
</p> |
|
<div style="display: flex; gap: 10px; justify-content: center;"> |
|
<a href="https://github.com/hpcaitech/Open-Sora/stargazers"><img src="https://img.shields.io/github/stars/hpcaitech/Open-Sora?style=social"></a> |
|
<a href="https://hpcaitech.github.io/Open-Sora/"><img src="https://img.shields.io/badge/Gallery-View-orange?logo=&"></a> |
|
<a href="https://discord.gg/kZakZzrSUT"><img src="https://img.shields.io/badge/Discord-join-blueviolet?logo=discord&"></a> |
|
<a href="https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-247ipg9fk-KRRYmUl~u2ll2637WRURVA"><img src="https://img.shields.io/badge/Slack-ColossalAI-blueviolet?logo=slack&"></a> |
|
<a href="https://twitter.com/yangyou1991/status/1769411544083996787?s=61&t=jT0Dsx2d-MS5vS9rNM5e5g"><img src="https://img.shields.io/badge/Twitter-Discuss-blue?logo=twitter&"></a> |
|
<a href="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png"><img src="https://img.shields.io/badge/微信-小助手加群-green?logo=wechat&"></a> |
|
<a href="https://hpc-ai.com/blog/open-sora-v1.0"><img src="https://img.shields.io/badge/Open_Sora-Blog-blue"></a> |
|
</div> |
|
<h1 style='margin-top: 5px;'>Open-Sora: Democratizing Efficient Video Production for All</h1> |
|
</div> |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
prompt_text = gr.Textbox( |
|
label="Prompt", |
|
placeholder="Describe your video here", |
|
lines=4, |
|
) |
|
resolution = gr.Radio( |
|
choices=["144p", "240p", "360p", "480p", "720p"], |
|
value="240p", |
|
label="Resolution", |
|
) |
|
aspect_ratio = gr.Radio( |
|
choices=["9:16", "16:9", "3:4", "4:3", "1:1"], |
|
value="9:16", |
|
label="Aspect Ratio (H:W)", |
|
) |
|
length = gr.Radio( |
|
choices=["2s", "4s", "8s", "16s"], |
|
value="2s", |
|
label="Video Length (only effective for video generation)", |
|
info="8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time." |
|
) |
|
|
|
with gr.Row(): |
|
seed = gr.Slider( |
|
value=1024, |
|
minimum=1, |
|
maximum=2048, |
|
step=1, |
|
label="Seed" |
|
) |
|
|
|
sampling_steps = gr.Slider( |
|
value=100, |
|
minimum=1, |
|
maximum=200, |
|
step=1, |
|
label="Sampling steps" |
|
) |
|
cfg_scale = gr.Slider( |
|
value=7.0, |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
label="CFG Scale" |
|
) |
|
|
|
reference_image = gr.Image( |
|
label="Reference Image (Optional)", |
|
) |
|
|
|
with gr.Column(): |
|
output_video = gr.Video( |
|
label="Output Video", |
|
height="100%" |
|
) |
|
|
|
with gr.Row(): |
|
image_gen_button = gr.Button("Generate image") |
|
video_gen_button = gr.Button("Generate video") |
|
|
|
|
|
image_gen_button.click( |
|
fn=run_image_inference, |
|
inputs=[prompt_text, resolution, aspect_ratio, length, reference_image, seed, sampling_steps, cfg_scale], |
|
outputs=reference_image |
|
) |
|
video_gen_button.click( |
|
fn=run_video_inference, |
|
inputs=[prompt_text, resolution, aspect_ratio, length, reference_image, seed, sampling_steps, cfg_scale], |
|
outputs=output_video |
|
) |
|
|
|
|
|
demo.launch(server_port=args.port, server_name=args.host, share=args.share) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|