Interview_AI / app.py
LiamKhoaLe's picture
Handle JSON at UI
f4c538b
# https://binkhoale1812-interview-ai.hf.space/
# Interview Q&A – FastAPI backend
import base64, io, json, logging, os, tempfile
import re
from pathlib import Path
from typing import Dict
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, FileResponse
from fastapi.staticfiles import StaticFiles
# AI / LLM
from google import genai
from google.genai import types
# ASR
import numpy as np
from pydub import AudioSegment
from transformers import WhisperProcessor, WhisperForConditionalGeneration
# Misc
from PIL import Image
##############################################################################
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
if not GEMINI_API_KEY:
raise RuntimeError("❌ GEMINI_API_KEY must be set as env var")
ASR_MODEL_ID = "openai/whisper-small.en"
ASR_LANGUAGE = "en"
SAMPLE_RATE = 16_000
##############################################################################
app = FastAPI(title="Interview Q&A Assistant", docs_url="/docs")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], allow_methods=["*"], allow_headers=["*"],
)
app.mount("/statics", StaticFiles(directory="statics"), name="statics")
# Enable Logging for Debugging
import psutil
import logging
# Set up app-specific logger
logger = logging.getLogger("triage-response")
logger.setLevel(logging.INFO) # Set to DEBUG only when needed
# Set log format
formatter = logging.Formatter("[%(levelname)s] %(asctime)s - %(message)s")
handler = logging.StreamHandler()
handler.setFormatter(formatter)
logger.addHandler(handler)
# Suppress noisy libraries like pymongo, urllib3, etc.
for noisy in ["pymongo", "urllib3", "httpx", "uvicorn", "uvicorn.error", "uvicorn.access"]:
logging.getLogger(noisy).setLevel(logging.WARNING)
# Monitor Resources Before Startup
def check_system_resources():
memory = psutil.virtual_memory()
cpu = psutil.cpu_percent(interval=1)
disk = psutil.disk_usage("/")
# Defines log info messages
logger.info(f"🔍 System Resources - RAM: {memory.percent}%, CPU: {cpu}%, Disk: {disk.percent}%")
if memory.percent > 85:
logger.warning("⚠️ High RAM usage detected!")
if cpu > 90:
logger.warning("⚠️ High CPU usage detected!")
if disk.percent > 90:
logger.warning("⚠️ High Disk usage detected!")
check_system_resources()
##############################################################################
# Global ASR (lazy-loaded)
processor = model = None
def build_prompt(question: str) -> str:
return (
"You are a helpful career-coach AI. Answer the following interview "
"question clearly and concisely (≤200 words). Use markdown when helpful.\n\n"
f"Interview question: \"{question.strip()}\""
)
def memory_mb() -> float:
return round(psutil.Process().memory_info().rss / 1_048_576, 1)
@app.on_event("startup")
async def load_models():
global processor, model
cache = Path("model_cache"); cache.mkdir(exist_ok=True)
processor = WhisperProcessor.from_pretrained(ASR_MODEL_ID, cache_dir=cache)
model = WhisperForConditionalGeneration.from_pretrained(ASR_MODEL_ID, cache_dir=cache)
forced = processor.get_decoder_prompt_ids(task="transcribe", language="english")
model.config.forced_decoder_ids = forced
model.to("cpu").eval()
logger.info("[MODEL] 🔊 Whisper loaded ✔")
@app.get("/")
async def root() -> FileResponse: # serve SPA
logger.info("[STATIC] Serving frontend")
return FileResponse(Path("statics/index.html"))
##############################################################################
# ── MAIN ENDPOINTS ──────────────────────────────────────────────────────────
def call_gemini(prompt: str, vision_parts=None) -> str:
client = genai.Client(api_key=GEMINI_API_KEY)
kwargs: Dict = {}
if vision_parts: # multimodal call
kwargs["contents"] = vision_parts + [{"text": prompt}]
else:
kwargs["contents"] = prompt
resp = client.models.generate_content(
model="gemini-2.5-flash-preview-04-17", **kwargs
)
try:
resp = client.models.generate_content(
model="gemini-2.5-flash-preview-04-17", **kwargs
)
# Check for at least one valid candidate
if not resp.candidates:
raise RuntimeError("No candidates returned from Gemini")
# Start at first index
candidate = resp.candidates[0]
if candidate.content is None or not hasattr(candidate.content, "parts"):
raise RuntimeError("Gemini candidate missing content parts")
# Join all .text fields in case Gemini responds in multiple parts.
text = "".join(part.text for part in candidate.content.parts if hasattr(part, "text"))
if not text.strip():
raise RuntimeError("Gemini response contained empty text")
# Success
logger.info(f"[LLM] ✅ Response received: {text[:100]}...")
return text.strip()
# Fail
except Exception as e:
logger.error(f"[LLM] ❌ Gemini API error: {e}")
raise RuntimeError("Gemini API response format error")
@app.post("/voice-transcribe")
async def voice_transcribe(file: UploadFile = File(...)):
if file.content_type not in {"audio/wav", "audio/x-wav", "audio/mpeg"}:
raise HTTPException(415, "Unsupported audio type")
# Write temporary audio file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp.write(await file.read()); tmp_path = tmp.name
# Audio processing and transcription
try:
seg = AudioSegment.from_file(tmp_path).set_frame_rate(SAMPLE_RATE).set_channels(1)
audio = np.array(seg.get_array_of_samples()).astype(np.float32) / (2 ** 15)
inputs = processor(audio, sampling_rate=SAMPLE_RATE, return_tensors="pt")
ids = model.generate(inputs.input_features.to(model.device))
question = processor.decode(ids[0], skip_special_tokens=True).strip()
if not question:
raise ValueError("No speech detected")
logger.info(f"[MODEL] Transcribed text: {question}")
answer = call_gemini(build_prompt(question))
return JSONResponse({"question": question, "answer": answer, "memory_mb": memory_mb()})
finally:
os.remove(tmp_path)
# Route sending question as image (PNG/JPEG)
@app.post("/image-question")
async def image_question(file: UploadFile = File(...)):
if file.content_type not in {"image/png", "image/jpeg"}:
raise HTTPException(415, "Unsupported image type")
# Read file and decode
raw = await file.read()
b64 = base64.b64encode(raw).decode()
# Send image data
vision_part = [{
"inline_data": {
"mime_type": file.content_type,
"data": b64
}
}]
# Ask Gemini to return JSON splitting Q&A
prompt = (
"From the screenshot, extract all English interview question(s). "
"There may be multiple questions. For each, provide a concise answer (≤200 words).\n\n"
"Return only valid JSON as a list of objects:\n"
"[\n"
" {\"question\": \"...\", \"answer\": \"...\"},\n"
" {\"question\": \"...\", \"answer\": \"...\"},\n"
" ...\n"
"]\n\n"
"Do not include explanations or additional formatting — only output raw JSON."
)
# Send prompt and image
text = call_gemini(prompt, vision_part)
try: # Parsed from JSON (rm bracket and markdown)
cleaned = re.sub(r"^```json\s*|\s*```$", "", text.strip(), flags=re.IGNORECASE | re.MULTILINE)
parsed = json.loads(cleaned)
try:
# If it's a list of Q&A
if isinstance(parsed, list):
return JSONResponse(parsed)
# Fallback: single object
elif isinstance(parsed, dict):
question = str(parsed.get("question", "")).strip()
answer = str(parsed.get("answer", "")).strip()
return JSONResponse([{"question": question, "answer": answer}])
except Exception as e:
raise ValueError("Unexpected JSON format from Gemini")
# Remove accidental outer quotes if double-wrapped
if question.startswith("{") or answer.startswith("{"):
raise ValueError("Wrapped JSON detected inside field")
except Exception as e:
logger.warning(f"[PARSE] Failed to cleanly extract JSON fields: {e}")
return JSONResponse([{
"question": "[Extracted from screenshot]",
"answer": text.strip()
}])
# Text based question (both voice transcribe or edit question)
@app.post("/text-question")
async def text_question(payload: Dict):
question = (payload.get("question") or "").strip()
if not question:
raise HTTPException(400, "question is required")
answer = call_gemini(build_prompt(question))
return JSONResponse({"question": question, "answer": answer, "memory_mb": memory_mb()})