Spaces:
Running
Running
File size: 9,908 Bytes
4be0291 39bc853 4be0291 66b3608 a5c9751 7fed2df 0527179 4be0291 8b4657a 7de92cf 0527179 e7a100a 7fc8447 8b4657a b647859 8b4657a 0daea72 8b4657a 20a9392 45ab87d 8b4657a b647859 05ec8aa b647859 05ec8aa 4be0291 05ec8aa 4be0291 0daea72 4be0291 a5c9751 4be0291 a5c9751 4be0291 0527179 4be0291 0527179 4be0291 0527179 4be0291 0527179 4be0291 0527179 4be0291 0daea72 dab5624 4be0291 0daea72 4be0291 0527179 4be0291 0527179 b647859 0527179 e7a100a 4be0291 e7a100a 45ab87d 5c8b7b4 e7a100a 0527179 e7a100a 45ab87d e7a100a 45ab87d e7a100a a00bf6e b647859 7acc416 e7a100a 45ab87d 0e28843 cec2ab4 0e28843 0527179 cec2ab4 0527179 0e28843 0527179 cec2ab4 0527179 cec2ab4 0527179 cec2ab4 0527179 0e28843 4be0291 0527179 91f0302 56a9d79 4be0291 0527179 4be0291 0527179 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import os
import requests
import sentence_transformers
import streamlit as st
VECTOR_DB ="bbf2ef09-875b-4737-a793-499409a108b0"
JSON_DB = "f49e274a-b5c3-4573-81a2-32df8f96e97b"
IBM_API_KEY = os.getenv("IBM_API_KEY")
IBM_URL_TOKEN = "https://iam.cloud.ibm.com/identity/token"
IBM_URL_CHAT = "https://us-south.ml.cloud.ibm.com/ml/v1/text/chat?version=2023-10-25"
if "messages" not in st.session_state:
st.session_state.messages = []
if "query" not in st.session_state:
st.session_state.query = ""
if "extended_query" not in st.session_state:
st.session_state.extended_query = ""
##############################################
##
## IBM API
##
##############################################
def IBM_token():
# Define the headers
headers = {
"Content-Type": "application/x-www-form-urlencoded"
}
# Define the data payload
data = {
"grant_type": "urn:ibm:params:oauth:grant-type:apikey",
"apikey": IBM_API_KEY
}
# Make the POST request
response = requests.post(IBM_URL_TOKEN, headers=headers, data=data)
st.session_state.IBM_ACCESS_TOKEN = response.json().get("access_token", "")
def IBM_chat (messages, temperature = 0.7):
body = {
"model_id": "ibm/granite-3-8b-instruct",
"project_id": os.getenv("IBM_PROJECT_ID"),
"messages": messages,
"max_tokens": 10000,
"temperature": temperature,
"time_limit": 40000
}
headers = {
"Accept": "application/json",
"Content-Type": "application/json",
"Authorization": "Bearer " + st.session_state.IBM_ACCESS_TOKEN
}
response = requests.post(
IBM_URL_CHAT,
headers=headers,
json=body
)
if response.status_code != 200:
raise Exception("Non-200 response: " + str(response.text))
response = response.json()
return response["choices"][0]["message"]["content"]
def IBM_query (prompt, temperature = 0.7):
messages = [{"role": "user", "content": prompt}]
return IBM_chat(messages, temperature)
def get_credentials():
return {
"url" : "https://us-south.ml.cloud.ibm.com",
"apikey" : os.getenv("IBM_API_KEY")
}
##############################################
##
## Vector DB
##
##############################################
from ibm_watsonx_ai.client import APIClient
from ibm_watsonx_ai.foundation_models.embeddings.sentence_transformer_embeddings import SentenceTransformerEmbeddings
def rerank( client, documents, query, top_n ):
from ibm_watsonx_ai.foundation_models import Rerank
reranker = Rerank(
model_id="cross-encoder/ms-marco-minilm-l-12-v2",
api_client=client,
params={
"return_options": {
"top_n": top_n
},
"truncate_input_tokens": 512
}
)
reranked_results = reranker.generate(query=query, inputs=documents)["results"]
new_documents = []
for result in reranked_results:
result_index = result["index"]
new_documents.append(documents[result_index])
return new_documents
import subprocess
import gzip
import json
import chromadb
import random
import string
def hydrate_chromadb():
#data = st.session_state.client.data_assets.get_content(JSON_DB)
#stringified_vectors = str(content, "utf-8")
with open("lablab - json.txt", "r", encoding="utf-8") as f:
#with open("lablab.gzip", "rb") as f:
gz = f.read()
#content = gzip.decompress(gz)
#stringified_vectors = str(content, "utf-8")
vectors = json.loads(gz)
chroma_client = chromadb.PersistentClient(path="./chroma_db")
# make sure collection is empty if it already existed
collection_name = "my_collection"
try:
collection = chroma_client.delete_collection(name=collection_name)
except:
print("Collection didn't exist - nothing to do.")
collection = chroma_client.create_collection(name=collection_name)
vector_embeddings = []
vector_documents = []
vector_metadatas = []
vector_ids = []
for vector in vectors:
vector_embeddings.append(vector["embedding"])
vector_documents.append(vector["content"]
)
#metadata = vector["metadata"]
#lines = metadata["loc"]["lines"]
clean_metadata = {}
clean_metadata["source"] = "Lablab website"
#clean_metadata["asset_id"] = metadata["asset_id"]
#clean_metadata["asset_name"] = metadata["asset_name"]
#clean_metadata["url"] = metadata["url"]
#clean_metadata["from"] = lines["from"]
#clean_metadata["to"] = lines["to"]
vector_metadatas.append(clean_metadata)
#asset_id = vector["metadata"]["asset_id"]
random_string = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10))
#id = "{}:{}-{}-{}".format(asset_id, lines["from"], lines["to"], random_string)
vector_ids.append(random_string)
collection.add(
embeddings=vector_embeddings,
documents=vector_documents,
metadatas=vector_metadatas,
ids=vector_ids
)
return collection
def proximity_search( question ):
query_vectors = st.session_state.emb.embed_query(question)
query_result = st.session_state.chroma_collection.query(
query_embeddings=query_vectors,
n_results=st.session_state.top_n,
include=["documents", "metadatas", "distances"]
)
documents = list(reversed(query_result["documents"][0]))
#if st.session_state.vector_index_properties["settings"].get("rerank"):
# documents = rerank(st.session_state.client, documents, question, 10) # st.session_state.vector_index_properties["settings"]["top_k"])
return "\n".join(documents)
def do_query(query):
# add the submissions as context (only in prompt, not in history)
grounding = proximity_search(query)
prompt = query + ". For a project share the image as markdown and mention the url as well. The context for the question: " + grounding;
#messages = st.session_state.messages.copy()
#messages.append({"role": "user", "content": prompt})
#st.session_state.messages.append({"role": "user", "content": query})
messages = [{"role": "user", "content": prompt}]
# Get response from IBM
with st.spinner("Thinking..."):
assistant_reply = IBM_chat(messages, 0) ## no creativity here, just searching
# Display assistant message
st.chat_message("assistant").markdown(assistant_reply)
#st.session_state.messages.append({"role": "assistant", "content": assistant_reply})
#st.session_state.query = query
############################
##
## UI
##
############################
# Load the banner image from the same directory
st.image("banner_policy.jpg", use_container_width=True)
# set up sidebar
st.sidebar.title("๐ง Synergy Scrolling")
st.sidebar.write(
"Synergy Scrolling analyzes policies and finds relevant past projects. "
"This tool helps match your policy or business idea with projects from "
"previous LabLab hackathons."
)
################ INIT
if "client" not in st.session_state:
with st.spinner("โณ Waking the wizard ..."):
IBM_token()
wml_credentials = get_credentials()
st.session_state.client = APIClient(credentials=wml_credentials, project_id=os.getenv("IBM_PROJECT_ID"))
#vector_index_details = st.session_state.client.data_assets.get_details(VECTOR_DB)
#st.session_state.vector_index_properties = vector_index_details["entity"]["vector_index"]
#st.session_state.top_n = 20 if st.session_state.vector_index_properties["settings"].get("rerank") else int(st.session_state.vector_index_properties["settings"]["top_k"])
st.session_state.emb = SentenceTransformerEmbeddings('sentence-transformers/all-MiniLM-L6-v2')
st.session_state.top_n = 10
if "chroma_collection" not in st.session_state:
with st.spinner("โณ Dusting off the scroll books ..."):
st.session_state.chroma_collection = hydrate_chromadb()
query = ""
################ main UI
st.title("๐ฎ Policy Scroll")
st.subheader("AI-Powered Project & Policy Matching")
st.write("Explore the Lab Lab Library to find relevant past projects that align with your policy or new initiative.")
################ sidebar UI
policy_input = st.sidebar.text_area("๐ Enter Your Policy or Business Idea:")
if st.sidebar.button("๐ Analyze with IBM Granite"):
if policy_input.strip():
prompt = f"Define search criteria for projects to implement: {policy_input}"
# Get response from IBM
with st.spinner("Analyzing..."):
result = IBM_query(prompt, 0.7)
st.session_state["extended_query"] = "Find 3 projects that best match and explain why, with these criteria: " + result
else:
st.sidebar.warning("Please enter a policy or business idea first!")
# Display AI result in another textarea
st.sidebar.text_area("๐ก Extended query:", value=st.session_state.get("extended_query", ""), height=150)
if st.sidebar.button("๐ Search for synergy"):
query = st.session_state.get("extended_query", "")
# Suggested search queries as buttons
col1, col2, col3 = st.columns(3)
with col1:
q = "Projects with a link with Solarpunk"
if st.button(q):
query = q
with col2:
q = "DEI aware projects"
if st.button(q):
query = q
with col3:
q = "Decentral projects"
if st.button(q):
query = q
# User input in Streamlit
user_input = st.text_input("Describe your policy or project to find relevant Lab Lab projects...", "")
# Display chat history
#for message in st.session_state.messages:
# with st.chat_message(message["role"]):
# st.markdown(message["content"])
if user_input:
do_query(user_input)
if query:
do_query(query)
|