BSJ2004's picture
Update app.py
e4da793 verified
import streamlit as st
import requests
import pandas as pd
import json
import os
import matplotlib.pyplot as plt
import seaborn as sns
import base64
from io import BytesIO
from PIL import Image, ImageEnhance
import time
from typing import Dict, Any, List, Optional
import uuid
import asyncio
from pydantic import BaseModel
import traceback
# Import backend utility functions (assuming these are in a separate utils.py file)
# For Hugging Face Spaces, you'll need to include these functions in the same file or a utils.py alongside app.py
from utils import (search_news, analyze_article_sentiment, perform_comparative_analysis,
translate_to_hindi, text_to_speech, prepare_final_report, NewsArticle)
# For this example, I'll assume utils.py is available. If not, you'd need to paste those function definitions here.
# API Base URL - Not needed since we're integrating directly, but kept for reference
API_BASE_URL = "http://localhost:8000"
# Define request/response models (from api.py)
class CompanyRequest(BaseModel):
company_name: str
class TextToSpeechRequest(BaseModel):
text: str
output_filename: Optional[str] = None
class SentimentAnalysisRequest(BaseModel):
articles: List[Dict[str, Any]]
# Backend functions adapted from api.py
async def get_news(company_name: str) -> Dict[str, Any]:
try:
articles = search_news(company_name, num_articles=5)
if not articles:
return {"error": f"No news articles found for {company_name}"}
article_data = [article.to_dict() for article in articles]
return {"articles": article_data}
except Exception as e:
return {"error": str(e)}
async def analyze_sentiment(articles: List[Dict[str, Any]]) -> Dict[str, Any]:
try:
news_articles = []
for article_dict in articles:
article = NewsArticle(
title=article_dict["title"],
url=article_dict["url"],
content=article_dict["content"],
summary=article_dict.get("summary", ""),
source=article_dict.get("source", ""),
date=article_dict.get("date", ""),
sentiment=article_dict.get("sentiment", ""),
topics=article_dict.get("topics", [])
)
news_articles.append(article)
detailed_sentiment = [analyze_article_sentiment(article) for article in news_articles]
comparative_analysis = perform_comparative_analysis(news_articles)
return {
"sentiment_analysis": {
"detailed_sentiment": detailed_sentiment,
"comparative_analysis": comparative_analysis
}
}
except Exception as e:
return {"error": str(e)}
async def generate_speech(text: str, output_filename: str = None) -> Dict[str, Any]:
try:
if not output_filename:
unique_id = uuid.uuid4().hex
output_filename = f"audio_files/{unique_id}.mp3"
elif not output_filename.startswith("audio_files/"):
output_filename = f"audio_files/{output_filename}"
os.makedirs("audio_files", exist_ok=True)
hindi_text = translate_to_hindi(text)
audio_file = text_to_speech(hindi_text, output_filename)
if not audio_file:
return {"error": "Failed to generate audio file"}
return {"audio_file": audio_file, "text": hindi_text}
except Exception as e:
return {"error": str(e)}
async def complete_analysis(company_name: str) -> Dict[str, Any]:
try:
articles = search_news(company_name, num_articles=5)
if not articles:
return {"error": f"No news articles found for {company_name}"}
comparative_analysis = perform_comparative_analysis(articles)
final_report = prepare_final_report(company_name, articles, comparative_analysis)
unique_id = uuid.uuid4().hex
output_filename = f"audio_files/{unique_id}.mp3"
hindi_text = final_report["Hindi Summary"]
audio_file = text_to_speech(hindi_text, output_filename)
formatted_response = {
"Company": company_name,
"Articles": final_report["Articles"],
"Comparative Sentiment Score": {
"Sentiment Distribution": comparative_analysis["Sentiment Distribution"],
"Coverage Differences": comparative_analysis["Coverage Differences"],
"Topic Overlap": {
"Common Topics": comparative_analysis["Topic Overlap"]["Common Topics Across All"],
}
},
"Final Sentiment Analysis": comparative_analysis["Final Sentiment Analysis"],
"Hindi Summary": final_report["Hindi Summary"]
}
unique_topics = comparative_analysis["Topic Overlap"]["Unique Topics By Article"]
for article_idx, topics in unique_topics.items():
article_num = int(article_idx) + 1
formatted_response["Comparative Sentiment Score"]["Topic Overlap"][f"Unique Topics in Article {article_num}"] = topics
if len(articles) <= 1:
formatted_response["Comparative Sentiment Score"]["Coverage Differences"] = [
{
"Comparison": f"Only one article about {company_name} was found, limiting comparative analysis.",
"Impact": "Unable to compare coverage across multiple sources for more comprehensive insights."
}
]
if audio_file:
formatted_response["Audio"] = "[Play Hindi Speech]"
formatted_response["_audio_file_path"] = audio_file
else:
formatted_response["Audio"] = "Failed to generate audio"
return formatted_response
except Exception as e:
error_message = f"Error processing request: {str(e)}"
user_message = "An error occurred during analysis. "
if "timeout" in str(e).lower():
user_message += "There was a timeout when connecting to news sources. Please try again."
elif "connection" in str(e).lower():
user_message += "There was a connection issue. Please check your internet."
elif "not found" in str(e).lower():
user_message += f"No information could be found for {company_name}."
else:
user_message += "Please try again."
return {"error": user_message}
# Streamlit UI functions (from app.py)
def generate_example_output(company_name: str) -> str:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = loop.run_until_complete(complete_analysis(company_name))
formatted_output = {
"Company": result.get("Company", company_name),
"Articles": result.get("Articles", []),
"Comparative Sentiment Score": result.get("Comparative Sentiment Score", {
"Sentiment Distribution": {},
"Coverage Differences": [],
"Topic Overlap": {}
}),
"Final Sentiment Analysis": result.get("Final Sentiment Analysis", ""),
"Audio": result.get("Audio", "No audio available")
}
return json.dumps(formatted_output, indent=2)
def get_sentiment_color(sentiment: str) -> str:
if sentiment == "Positive":
return "positive"
elif sentiment == "Negative":
return "negative"
else:
return "neutral"
def plot_sentiment_distribution(sentiment_data: Dict[str, int]):
labels = ["Positive", "Neutral", "Negative"]
values = [sentiment_data.get(label, 0) for label in labels]
colors = ["#059669", "#6B7280", "#DC2626"]
fig, ax = plt.subplots(figsize=(10, 6))
ax.bar(labels, values, color=colors)
ax.set_title("Sentiment Distribution", fontsize=16, fontweight='bold')
ax.set_ylabel("Number of Articles", fontsize=12)
ax.grid(axis='y', linestyle='--', alpha=0.7)
for i, v in enumerate(values):
ax.text(i, v + 0.1, str(v), ha='center', fontweight='bold')
return fig
def display_article(article: Dict[str, Any], index: int):
st.markdown(f"<div class='card'>", unsafe_allow_html=True)
sentiment = article.get("Sentiment", "Neutral")
sentiment_class = get_sentiment_color(sentiment)
st.markdown(f"<h3 class='article-title'>{index+1}. {article['Title']}</h3>", unsafe_allow_html=True)
st.markdown(f"<span class='{sentiment_class}'>{sentiment}</span>", unsafe_allow_html=True)
st.markdown("<div class='article-summary'>", unsafe_allow_html=True)
st.markdown(f"{article.get('Summary', 'No summary available.')}", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
if "Topics" in article and article["Topics"]:
st.markdown("<div>", unsafe_allow_html=True)
for topic in article["Topics"]:
st.markdown(f"<span class='topic-tag'>{topic}</span>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Streamlit App
st.set_page_config(
page_title="News Summarization & TTS",
page_icon="📰",
layout="wide",
initial_sidebar_state="expanded"
)
st.markdown("""
<style>
.main-header { font-size: 2.5rem; font-weight: 700; color: #1E3A8A; margin-bottom: 1rem; }
.sub-header { font-size: 1.5rem; font-weight: 600; color: #2563EB; margin-top: 1rem; margin-bottom: 0.5rem; }
.card { padding: 1.5rem; border-radius: 0.5rem; background-color: #F8FAFC; border: 1px solid #E2E8F0; margin-bottom: 1rem; }
.positive { color: #059669; font-weight: 600; }
.negative { color: #DC2626; font-weight: 600; }
.neutral { color: #6B7280; font-weight: 600; }
.topic-tag { display: inline-block; padding: 0.25rem 0.5rem; border-radius: 2rem; background-color: #E5E7EB; color: #1F2937; font-size: 0.75rem; margin-right: 0.5rem; margin-bottom: 0.5rem; }
.audio-container { width: 100%; padding: 1rem; background-color: #F3F4F6; border-radius: 0.5rem; margin-top: 1rem; }
.info-text { font-size: 0.9rem; color: #4B5563; }
.article-title { font-size: 1.2rem; font-weight: 600; color: #111827; margin-bottom: 0.5rem; margin-top: 0.5rem; }
.article-summary { font-size: 0.9rem; color: #374151; margin-bottom: 0.5rem; }
.section-divider { height: 1px; background-color: #E5E7EB; margin: 1.5rem 0; }
</style>
""", unsafe_allow_html=True)
st.markdown("<h1 class='main-header'>📰 News Summarization & Text-to-Speech</h1>", unsafe_allow_html=True)
st.markdown("""
<p class='info-text'>
This application extracts news articles about a company, performs sentiment analysis, conducts comparative analysis,
and generates a text-to-speech output in Hindi. Enter a company name to get started.
</p>
""", unsafe_allow_html=True)
# Sidebar
st.sidebar.image("https://cdn-icons-png.flaticon.com/512/2593/2593073.png", width=100)
st.sidebar.title("News Analysis Settings")
company_input_method = st.sidebar.radio(
"Select company input method:",
options=["Text Input", "Choose from List"]
)
if company_input_method == "Text Input":
company_name = st.sidebar.text_input("Enter Company Name:", placeholder="e.g., Tesla")
else:
companies = ["Apple", "Google", "Microsoft", "Amazon", "Tesla", "Meta", "Netflix", "Uber", "Airbnb", "Twitter"]
company_name = st.sidebar.selectbox("Select Company:", companies)
max_articles = st.sidebar.slider("Maximum Articles to Analyze:", min_value=5, max_value=20, value=10)
analyze_button = st.sidebar.button("Analyze Company News", type="primary")
audio_speed = st.sidebar.select_slider("TTS Speech Speed:", options=["Slow", "Normal", "Fast"], value="Normal")
show_json = st.sidebar.checkbox("Show JSON output in example format")
with st.sidebar.expander("About This App"):
st.markdown("""
This application performs:
- News extraction from multiple sources
- Sentiment analysis of the content
- Topic identification and comparative analysis
- Text-to-speech conversion to Hindi
""")
# Main content
if analyze_button and company_name:
with st.spinner(f"Analyzing news for {company_name}... This may take a minute"):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
response = loop.run_until_complete(complete_analysis(company_name))
if "error" in response:
st.error(response["error"])
else:
st.markdown(f"<h2 class='sub-header'>Analysis Results for {response['Company']}</h2>", unsafe_allow_html=True)
col1, col2 = st.columns([2, 1])
with col1:
st.markdown("<div class='card'>", unsafe_allow_html=True)
st.markdown("<h3 class='sub-header'>Sentiment Overview</h3>", unsafe_allow_html=True)
st.markdown(f"{response['Final Sentiment Analysis']}")
st.markdown("</div>", unsafe_allow_html=True)
with col2:
sentiment_data = response["Comparative Sentiment Score"]["Sentiment Distribution"]
fig = plot_sentiment_distribution(sentiment_data)
st.pyplot(fig)
st.markdown("<div class='section-divider'></div>", unsafe_allow_html=True)
if "Audio" in response and response["Audio"] == "[Play Hindi Speech]":
st.markdown("<h3 class='sub-header'>Hindi Audio Summary</h3>", unsafe_allow_html=True)
audio_file_path = response.get("_audio_file_path")
if audio_file_path and os.path.exists(audio_file_path):
st.markdown("<div class='audio-container'>", unsafe_allow_html=True)
st.audio(audio_file_path, format="audio/mp3")
with open(audio_file_path, "rb") as f:
audio_bytes = f.read()
b64 = base64.b64encode(audio_bytes).decode()
href = f'<a href="data:audio/mp3;base64,{b64}" download="hindi_summary.mp3">Download Hindi Audio</a>'
st.markdown(href, unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
else:
st.warning("Hindi audio could not be generated.")
with st.expander("Show Hindi Text"):
hindi_text = response.get("Hindi Summary", "Hindi text not available.")
paragraphs = hindi_text.split("। ")
for paragraph in paragraphs:
if paragraph.strip():
if not paragraph.strip().endswith("।"):
paragraph += "।"
st.markdown(f"<p style='font-size: 16px; margin-bottom: 10px;'>{paragraph}</p>", unsafe_allow_html=True)
st.markdown("<div class='section-divider'></div>", unsafe_allow_html=True)
st.markdown("<h3 class='sub-header'>News Articles</h3>", unsafe_allow_html=True)
articles = response.get("Articles", [])
if not articles:
st.info("No articles found for this company.")
else:
for i, article in enumerate(articles):
display_article(article, i)
st.markdown("<div class='section-divider'></div>", unsafe_allow_html=True)
st.markdown("<h3 class='sub-header'>Comparative Analysis</h3>", unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
st.markdown("<div class='card'>", unsafe_allow_html=True)
st.markdown("<h4>Common Topics</h4>", unsafe_allow_html=True)
common_topics = response["Comparative Sentiment Score"]["Topic Overlap"].get("Common Topics", [])
if common_topics:
for topic in common_topics:
st.markdown(f"<span class='topic-tag'>{topic}</span>", unsafe_allow_html=True)
else:
st.info("No common topics found across articles.")
st.markdown("</div>", unsafe_allow_html=True)
with col2:
st.markdown("<div class='card'>", unsafe_allow_html=True)
st.markdown("<h4>Coverage Comparison</h4>", unsafe_allow_html=True)
comparisons = response["Comparative Sentiment Score"].get("Coverage Differences", [])
if comparisons:
for i, comparison in enumerate(comparisons[:3]):
st.markdown(f"<p><strong>{i+1}.</strong> {comparison.get('Comparison', '')}</p>", unsafe_allow_html=True)
st.markdown(f"<p class='info-text'>{comparison.get('Impact', '')}</p>", unsafe_allow_html=True)
else:
st.info("No comparative insights available.")
st.markdown("</div>", unsafe_allow_html=True)
with st.expander("View All Comparisons"):
for i, comparison in enumerate(comparisons):
st.markdown(f"<p><strong>{i+1}.</strong> {comparison.get('Comparison', '')}</p>", unsafe_allow_html=True)
st.markdown(f"<p class='info-text'>{comparison.get('Impact', '')}</p>", unsafe_allow_html=True)
st.markdown("<hr>", unsafe_allow_html=True)
if show_json:
st.markdown("<div class='section-divider'></div>", unsafe_allow_html=True)
st.markdown("<h3 class='sub-header'>Example JSON Format</h3>", unsafe_allow_html=True)
json_output = generate_example_output(company_name)
st.code(json_output, language="json")
else:
st.markdown("<div class='card'>", unsafe_allow_html=True)
st.markdown("<h3 class='sub-header'>Enter a Company Name to Begin Analysis</h3>", unsafe_allow_html=True)
st.markdown("""
<p class='info-text'>
This application will:
</p>
<ul class='info-text'>
<li>Extract news articles from multiple sources</li>
<li>Analyze sentiment (positive, negative, neutral)</li>
<li>Identify key topics in each article</li>
<li>Perform comparative analysis across articles</li>
<li>Generate Hindi speech output summarizing the findings</li>
</ul>
""", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
st.image("https://miro.medium.com/max/1400/1*Ger-949PgQnaje2oa9XMdw.png", caption="Sample sentiment analysis visualization")
st.markdown("<div class='section-divider'></div>", unsafe_allow_html=True)
st.markdown("<p class='info-text' style='text-align: center;'>News Summarization & Text-to-Speech Application | Developed with Streamlit</p>", unsafe_allow_html=True)