File size: 55,027 Bytes
47af8ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 |
import requests
import re
import os
import json
import time
from typing import List, Dict, Any, Tuple, Optional
from bs4 import BeautifulSoup
import pandas as pd
import numpy as np
from nltk.corpus import stopwords
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.cluster.util import cosine_distance
import networkx as nx
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from collections import Counter
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
from deep_translator import GoogleTranslator
from gtts import gTTS
import pyttsx3
# Download necessary NLTK data
import nltk
try:
nltk.data.find('tokenizers/punkt')
nltk.data.find('corpora/stopwords')
except LookupError:
nltk.download('punkt')
nltk.download('stopwords')
# Initialize sentiment analyzer
vader_analyzer = SentimentIntensityAnalyzer()
# Initialize advanced sentiment model
sentiment_model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
sentiment_tokenizer = AutoTokenizer.from_pretrained(sentiment_model_name)
sentiment_model = AutoModelForSequenceClassification.from_pretrained(sentiment_model_name)
advanced_sentiment = pipeline("sentiment-analysis", model=sentiment_model, tokenizer=sentiment_tokenizer)
# Initialize translator
translator = GoogleTranslator(source='en', target='hi')
class NewsArticle:
def __init__(self, title: str, url: str, content: str, summary: str = "", source: str = "",
date: str = "", sentiment: str = "", topics: List[str] = None):
self.title = title
self.url = url
self.content = content
self.summary = summary if summary else self.generate_summary(content)
self.source = source
self.date = date
self.sentiment = sentiment if sentiment else self.analyze_sentiment(content, title)
self.topics = topics if topics else self.extract_topics(content)
def to_dict(self) -> Dict[str, Any]:
return {
"title": self.title,
"url": self.url,
"content": self.content,
"summary": self.summary,
"source": self.source,
"date": self.date,
"sentiment": self.sentiment,
"topics": self.topics
}
@staticmethod
def analyze_sentiment(text: str, title: str = "") -> str:
"""
Analyze sentiment using a combination of methods for more accurate results.
We give more weight to the title sentiment and use advanced model when possible.
"""
# Set thresholds for VADER sentiment
threshold_positive = 0.05 # Default 0.05
threshold_negative = -0.05 # Default -0.05
# Use VADER for basic sentiment analysis on both title and content
try:
title_scores = vader_analyzer.polarity_scores(title) if title else {'compound': 0}
content_scores = vader_analyzer.polarity_scores(text)
# Weight the title more heavily (title sentiment is often more reliable)
title_weight = 0.6 if title else 0
content_weight = 1.0 - title_weight
compound_score = (title_weight * title_scores['compound']) + (content_weight * content_scores['compound'])
# Try to use the advanced model for additional insight (for short texts)
advanced_result = None
advanced_score = 0
try:
# Use title + first part of content for advanced model
sample_text = title + ". " + text[:300] if title else text[:300]
advanced_result = advanced_sentiment(sample_text)[0]
# Map advanced model results to a -1 to 1 scale similar to VADER
label = advanced_result['label']
confidence = advanced_result['score']
# Map the 1-5 star rating to a -1 to 1 scale
if label == '1 star' or label == '2 stars':
advanced_score = -confidence
elif label == '4 stars' or label == '5 stars':
advanced_score = confidence
else: # 3 stars is neutral
advanced_score = 0
# Combine VADER and advanced model scores
# Give more weight to advanced model when confidence is high
if confidence > 0.8:
compound_score = (0.4 * compound_score) + (0.6 * advanced_score)
else:
compound_score = (0.7 * compound_score) + (0.3 * advanced_score)
except Exception as e:
print(f"Advanced sentiment analysis failed: {str(e)}")
# Continue with just VADER if advanced model fails
pass
# Fine-grained sentiment mapping
if compound_score >= 0.3:
return "Positive"
elif compound_score >= threshold_positive:
return "Slightly Positive"
elif compound_score <= -0.3:
return "Negative"
elif compound_score <= threshold_negative:
return "Slightly Negative"
else:
return "Neutral"
except Exception as e:
print(f"Sentiment analysis error: {str(e)}")
return "Neutral" # Default fallback
@staticmethod
def generate_summary(text: str, num_sentences: int = 5) -> str:
# Generate summary using extractive summarization
if not text or len(text) < 100:
return text
# Tokenize sentences
sentences = sent_tokenize(text)
if len(sentences) <= num_sentences:
return text
# Calculate sentence similarity and rank them
similarity_matrix = build_similarity_matrix(sentences)
scores = nx.pagerank(nx.from_numpy_array(similarity_matrix))
# Select top sentences
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
summary_sentences = [ranked_sentences[i][1] for i in range(min(num_sentences, len(ranked_sentences)))]
# Maintain original order
original_order = []
for sentence in sentences:
if sentence in summary_sentences and sentence not in original_order:
original_order.append(sentence)
if len(original_order) >= num_sentences:
break
return " ".join(original_order)
@staticmethod
def extract_topics(text: str, num_topics: int = 5) -> List[str]:
# Extract key topics from text based on term frequency
stop_words = set(stopwords.words('english'))
words = word_tokenize(text.lower())
# Filter out stopwords and short words
filtered_words = [word for word in words if word.isalpha() and word not in stop_words and len(word) > 3]
# Count word frequencies
word_counts = Counter(filtered_words)
# Return most common words as topics
topics = [word for word, _ in word_counts.most_common(num_topics)]
return topics
def build_similarity_matrix(sentences: List[str]) -> np.ndarray:
"""Build similarity matrix for sentences based on cosine similarity."""
# Number of sentences
n = len(sentences)
# Initialize similarity matrix
similarity_matrix = np.zeros((n, n))
# Calculate similarity between each pair of sentences
for i in range(n):
for j in range(n):
if i != j:
similarity_matrix[i][j] = sentence_similarity(sentences[i], sentences[j])
return similarity_matrix
def sentence_similarity(sent1: str, sent2: str) -> float:
"""Calculate similarity between two sentences using cosine similarity."""
# Tokenize sentences
words1 = [word.lower() for word in word_tokenize(sent1) if word.isalpha()]
words2 = [word.lower() for word in word_tokenize(sent2) if word.isalpha()]
# Get all unique words
all_words = list(set(words1 + words2))
# Create word vectors
vector1 = [1 if word in words1 else 0 for word in all_words]
vector2 = [1 if word in words2 else 0 for word in all_words]
# Calculate cosine similarity
if not any(vector1) or not any(vector2):
return 0.0
return 1 - cosine_distance(vector1, vector2)
def search_news(company_name: str, num_articles: int = 10) -> List[NewsArticle]:
"""Search for news articles about a given company."""
# List to store articles
articles = []
# Define search queries and news sources
search_queries = [
f"{company_name} news",
f"{company_name} financial news",
f"{company_name} business news",
f"{company_name} recent news",
f"{company_name} company news",
f"{company_name} stock",
f"{company_name} market"
]
# Updated news sources with more reliable sources
news_sources = [
{
"base_url": "https://finance.yahoo.com/quote/",
"article_patterns": ["news", "finance", "articles"],
"direct_access": True
},
{
"base_url": "https://www.reuters.com/search/news?blob=",
"article_patterns": ["article", "business", "companies", "markets"],
"direct_access": False
},
{
"base_url": "https://www.marketwatch.com/search?q=",
"article_patterns": ["story", "articles", "news"],
"direct_access": False
},
{
"base_url": "https://www.fool.com/search?q=",
"article_patterns": ["article", "investing", "stock"],
"direct_access": False
},
{
"base_url": "https://seekingalpha.com/search?q=",
"article_patterns": ["article", "news", "stock", "analysis"],
"direct_access": False
},
{
"base_url": "https://www.zacks.com/search.php?q=",
"article_patterns": ["stock", "research", "analyst"],
"direct_access": False
},
{
"base_url": "https://economictimes.indiatimes.com/search?q=",
"article_patterns": ["articleshow", "news", "industry"],
"direct_access": False
},
{
"base_url": "https://www.bloomberg.com/search?query=",
"article_patterns": ["news", "articles"],
"direct_access": False
}
]
print(f"Starting search for news about {company_name}...")
# Search each source with each query until we have enough articles
for query in search_queries:
if len(articles) >= num_articles:
break
for source in news_sources:
if len(articles) >= num_articles:
break
try:
source_base = source["base_url"]
article_patterns = source["article_patterns"]
direct_access = source["direct_access"]
# Construct search URL
if direct_access:
# Try to fetch the stock symbol for Yahoo Finance
if "yahoo" in source_base:
try:
# First try the company name directly (for known tickers)
search_url = f"{source_base}{company_name}/news"
print(f"Trying direct ticker access: {search_url}")
# Fetch to check if valid
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
}
test_response = requests.get(search_url, headers=headers, timeout=10)
# If we got a 404, try searching for the symbol first
if test_response.status_code == 404:
print("Company name not a valid ticker, searching for symbol...")
symbol_url = f"https://finance.yahoo.com/lookup?s={company_name}"
symbol_response = requests.get(symbol_url, headers=headers, timeout=10)
if symbol_response.status_code == 200:
symbol_soup = BeautifulSoup(symbol_response.text, 'html.parser')
# Try to find the first stock symbol result
symbol_row = symbol_soup.select_one("tr.data-row0")
if symbol_row:
symbol_cell = symbol_row.select_one("td:first-child a")
if symbol_cell:
symbol = symbol_cell.text.strip()
search_url = f"{source_base}{symbol}/news"
print(f"Found symbol {symbol}, using URL: {search_url}")
except Exception as e:
print(f"Error getting stock symbol: {str(e)}")
search_url = f"{source_base}{company_name}/news"
else:
search_url = f"{source_base}{company_name}/news"
else:
search_url = f"{source_base}{query.replace(' ', '+')}"
print(f"Searching {search_url}")
# Fetch search results with retry mechanism
max_retries = 3
retry_count = 0
response = None
while retry_count < max_retries:
try:
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Accept": "text/html,application/xhtml+xml,application/xml",
"Accept-Language": "en-US,en;q=0.9",
"Referer": "https://www.google.com/"
}
response = requests.get(search_url, headers=headers, timeout=15)
if response.status_code == 200:
break
retry_count += 1
print(f"Retry {retry_count}/{max_retries} for {search_url} (status: {response.status_code})")
time.sleep(1) # Short delay before retry
except Exception as e:
retry_count += 1
print(f"Request error (attempt {retry_count}/{max_retries}): {str(e)}")
time.sleep(1)
if not response or response.status_code != 200:
print(f"Failed to fetch results from {search_url} after {max_retries} attempts")
continue
soup = BeautifulSoup(response.text, 'html.parser')
# Extract article links - using more flexible patterns
links = soup.find_all('a', href=True)
article_links = []
# Domain for resolving relative URLs
domain = response.url.split('/')[0] + '//' + response.url.split('/')[2]
print(f"Domain for resolving URLs: {domain}")
for link in links:
href = link['href']
link_text = link.text.strip()
# Skip empty links or navigation elements
if not link_text or len(link_text) < 10 or href.startswith('#'):
continue
# Check if the link matches any of our article patterns
is_article_link = False
for pattern in article_patterns:
if pattern in href.lower():
is_article_link = True
break
# Check for the company name in link text or URL (less restrictive now)
contains_company = (
company_name.lower() in link_text.lower() or
company_name.lower() in href.lower()
)
if is_article_link or contains_company:
# Convert relative URLs to absolute
if href.startswith('/'):
href = f"{domain}{href}"
elif not href.startswith(('http://', 'https://')):
href = f"{domain}/{href}"
# Avoid duplicates
if href not in article_links:
article_links.append(href)
print(f"Found potential article: {link_text[:50]}... at {href}")
print(f"Found {len(article_links)} potential article links from {search_url}")
# Process each article link
for link in article_links[:5]: # Increased from 3 to 5
if len(articles) >= num_articles:
break
try:
print(f"Fetching article: {link}")
article_response = requests.get(link, headers=headers, timeout=15)
if article_response.status_code != 200:
print(f"Failed to fetch article: {article_response.status_code}")
continue
article_soup = BeautifulSoup(article_response.text, 'html.parser')
# Extract article title - more robust method
title = None
# Try different elements that could contain the title
for title_tag in ['h1', 'h2', '.headline', '.title', 'title']:
if title:
break
if title_tag.startswith('.'):
elements = article_soup.select(title_tag)
else:
elements = article_soup.find_all(title_tag)
for element in elements:
candidate = element.text.strip()
if len(candidate) > 5 and len(candidate) < 200: # Reasonable title length
title = candidate
break
if not title:
print("Could not find a suitable title")
continue
# Check if title contains company name (case insensitive)
if company_name.lower() not in title.lower():
# Try alternative check - sometimes the title doesn't explicitly mention the company
meta_description = article_soup.find('meta', attrs={'name': 'description'}) or \
article_soup.find('meta', attrs={'property': 'og:description'})
if meta_description and 'content' in meta_description.attrs:
meta_text = meta_description['content']
if company_name.lower() not in meta_text.lower():
# One more check in the page content
page_text = article_soup.get_text().lower()
company_mentions = page_text.count(company_name.lower())
if company_mentions < 2: # Require at least 2 mentions
print(f"Article doesn't seem to be about {company_name}: {title}")
continue
# Extract article content - improved method
content = ""
# Try multiple content extraction strategies
content_containers = []
# 1. Look for article/main content containers
for container in ['article', 'main', '.article-body', '.story-body', '.story-content',
'.article-content', '.content-body', '.entry-content']:
if container.startswith('.'):
elements = article_soup.select(container)
else:
elements = article_soup.find_all(container)
content_containers.extend(elements)
# 2. If no specific containers, fallback to div with article-like classes
if not content_containers:
for div in article_soup.find_all('div', class_=True):
classes = div.get('class', [])
for cls in classes:
if any(term in cls.lower() for term in ['article', 'story', 'content', 'body', 'text']):
content_containers.append(div)
break
# 3. Extract paragraphs from containers
processed_paragraphs = set() # To avoid duplicates
for container in content_containers:
for p in container.find_all('p'):
p_text = p.text.strip()
# Avoid very short or duplicate paragraphs
if len(p_text) > 30 and p_text not in processed_paragraphs:
content += p_text + " "
processed_paragraphs.add(p_text)
# 4. If still no content, try all paragraphs
if not content:
for p in article_soup.find_all('p'):
p_text = p.text.strip()
if len(p_text) > 30 and p_text not in processed_paragraphs:
content += p_text + " "
processed_paragraphs.add(p_text)
content = content.strip()
# Skip if content is too short
if len(content) < 300: # Reduced from 500 to be less restrictive
print(f"Article content too short: {len(content)} characters")
continue
# Extract source name - more robust method
source = None
# Try to get from meta tags
meta_site_name = article_soup.find('meta', attrs={'property': 'og:site_name'})
if meta_site_name and 'content' in meta_site_name.attrs:
source = meta_site_name['content']
else:
# Extract from URL
try:
from urllib.parse import urlparse
parsed_url = urlparse(link)
source = parsed_url.netloc
except:
source = response.url.split('/')[2]
# Extract date - improved method
date = ""
# Try multiple date extraction strategies
# 1. Look for time element
date_tag = article_soup.find('time')
# 2. Look for meta tags with date
if not date and (not date_tag or not date_tag.get('datetime')):
for meta_name in ['article:published_time', 'date', 'publish-date', 'article:modified_time']:
meta_date = article_soup.find('meta', attrs={'property': meta_name}) or \
article_soup.find('meta', attrs={'name': meta_name})
if meta_date and 'content' in meta_date.attrs:
date = meta_date['content']
break
# 3. Look for spans/divs with date-related classes
if not date:
date_classes = ['date', 'time', 'published', 'posted', 'datetime']
for cls in date_classes:
elements = article_soup.find_all(['span', 'div', 'p'], class_=lambda x: x and cls.lower() in x.lower())
if elements:
date = elements[0].text.strip()
break
# If we got this far, we have a valid article
print(f"Successfully extracted article: {title}")
# Create article object and add to list
article = NewsArticle(
title=title,
url=link,
content=content,
source=source,
date=date
)
# Check if similar article already exists to avoid duplicates
is_duplicate = False
for existing_article in articles:
if sentence_similarity(existing_article.title, title) > 0.7: # Lowered threshold
is_duplicate = True
print(f"Found duplicate article: {title}")
break
if not is_duplicate:
articles.append(article)
print(f"Added article: {title}")
except Exception as e:
print(f"Error processing article {link}: {str(e)}")
continue
except Exception as e:
print(f"Error searching {source_base} with query {query}: {str(e)}")
continue
# If we couldn't find enough articles, create some dummy articles to prevent errors
if not articles and num_articles > 0:
print(f"No articles found for {company_name}. Creating a dummy article to prevent errors.")
dummy_article = NewsArticle(
title=f"{company_name} Information",
url="#",
content=f"Information about {company_name} was not found or could not be retrieved. This is a placeholder.",
source="System",
date="",
sentiment="Neutral",
topics=["information", "company", "placeholder"]
)
articles.append(dummy_article)
# Return collected articles
print(f"Returning {len(articles)} articles for {company_name}")
return articles[:num_articles]
def analyze_article_sentiment(article: NewsArticle) -> Dict[str, Any]:
"""Perform detailed sentiment analysis on an article."""
# Use VADER for paragraph-level sentiment
paragraphs = article.content.split('\n')
paragraph_sentiments = []
overall_scores = {
'pos': 0,
'neg': 0,
'neu': 0,
'compound': 0
}
for paragraph in paragraphs:
if len(paragraph.strip()) < 20: # Skip short paragraphs
continue
scores = vader_analyzer.polarity_scores(paragraph)
paragraph_sentiments.append({
'text': paragraph[:100] + '...' if len(paragraph) > 100 else paragraph,
'scores': scores
})
overall_scores['pos'] += scores['pos']
overall_scores['neg'] += scores['neg']
overall_scores['neu'] += scores['neu']
overall_scores['compound'] += scores['compound']
num_paragraphs = len(paragraph_sentiments)
if num_paragraphs > 0:
overall_scores['pos'] /= num_paragraphs
overall_scores['neg'] /= num_paragraphs
overall_scores['neu'] /= num_paragraphs
overall_scores['compound'] /= num_paragraphs
# Use advanced model for overall sentiment
try:
# Truncate content if too long
truncated_content = article.content[:512] if len(article.content) > 512 else article.content
advanced_result = advanced_sentiment(truncated_content)[0]
advanced_sentiment_label = advanced_result['label']
advanced_confidence = advanced_result['score']
except Exception as e:
print(f"Error with advanced sentiment analysis: {str(e)}")
advanced_sentiment_label = "Error"
advanced_confidence = 0.0
# Determine final sentiment
if overall_scores['compound'] >= 0.05:
final_sentiment = "Positive"
elif overall_scores['compound'] <= -0.05:
final_sentiment = "Negative"
else:
final_sentiment = "Neutral"
return {
'article_title': article.title,
'overall_sentiment': final_sentiment,
'vader_scores': overall_scores,
'advanced_sentiment': {
'label': advanced_sentiment_label,
'confidence': advanced_confidence
},
'paragraph_analysis': paragraph_sentiments,
'positive_ratio': overall_scores['pos'],
'negative_ratio': overall_scores['neg'],
'neutral_ratio': overall_scores['neu']
}
def perform_comparative_analysis(articles: List[NewsArticle]) -> Dict[str, Any]:
"""Perform comparative analysis across multiple articles."""
# Sentiment distribution with expanded categories
sentiment_counts = {
"Positive": 0,
"Slightly Positive": 0,
"Neutral": 0,
"Slightly Negative": 0,
"Negative": 0
}
for article in articles:
if article.sentiment in sentiment_counts:
sentiment_counts[article.sentiment] += 1
else:
# Fallback for any unexpected sentiment values
sentiment_counts["Neutral"] += 1
# Topic analysis
all_topics = []
for article in articles:
all_topics.extend(article.topics)
topic_counts = Counter(all_topics)
common_topics = [topic for topic, count in topic_counts.most_common(10)]
# Identify unique topics per article
unique_topics_by_article = {}
for i, article in enumerate(articles):
other_articles_topics = []
for j, other_article in enumerate(articles):
if i != j:
other_articles_topics.extend(other_article.topics)
unique_topics = [topic for topic in article.topics if topic not in other_articles_topics]
unique_topics_by_article[i] = unique_topics
# Generate comparisons
comparisons = []
# If we have more than one article, generate meaningful comparisons
if len(articles) > 1:
for i in range(len(articles) - 1):
for j in range(i + 1, len(articles)):
article1 = articles[i]
article2 = articles[j]
# Compare sentiments - more nuanced now with new categories
if article1.sentiment != article2.sentiment:
# Group sentiments for better comparison
sent1_group = get_sentiment_group(article1.sentiment)
sent2_group = get_sentiment_group(article2.sentiment)
if sent1_group != sent2_group:
comparison = {
"Articles": [article1.title, article2.title],
"Comparison": f"'{article1.title}' presents a {sent1_group.lower()} view ({article1.sentiment}), while '{article2.title}' has a {sent2_group.lower()} view ({article2.sentiment}).",
"Impact": "This difference in sentiment highlights varying perspectives on the company's situation."
}
comparisons.append(comparison)
else:
# Even if in same group, note the difference if one is stronger
if "Slightly" in article1.sentiment and "Slightly" not in article2.sentiment or \
"Slightly" in article2.sentiment and "Slightly" not in article1.sentiment:
stronger = article1 if "Slightly" not in article1.sentiment else article2
weaker = article2 if stronger == article1 else article1
comparison = {
"Articles": [stronger.title, weaker.title],
"Comparison": f"'{stronger.title}' expresses a stronger {sent1_group.lower()} sentiment ({stronger.sentiment}) than '{weaker.title}' ({weaker.sentiment}).",
"Impact": "The difference in intensity suggests varying degrees of confidence about the company."
}
comparisons.append(comparison)
# Compare topics
common_topics_between_two = set(article1.topics).intersection(set(article2.topics))
if common_topics_between_two:
comparison = {
"Articles": [article1.title, article2.title],
"Comparison": f"Both articles discuss {', '.join(common_topics_between_two)}.",
"Impact": "The common topics indicate key areas of focus around the company."
}
comparisons.append(comparison)
# Compare unique topics
unique_to_article1 = set(article1.topics) - set(article2.topics)
unique_to_article2 = set(article2.topics) - set(article1.topics)
if unique_to_article1 and unique_to_article2:
comparison = {
"Articles": [article1.title, article2.title],
"Comparison": f"'{article1.title}' uniquely covers {', '.join(unique_to_article1)}, while '{article2.title}' focuses on {', '.join(unique_to_article2)}.",
"Impact": "Different sources emphasize varying aspects of the company, offering a broader perspective."
}
comparisons.append(comparison)
else:
# If we only have one article, create a dummy comparison
if articles:
article = articles[0]
topics_str = ", ".join(article.topics[:3]) if article.topics else "no specific topics"
sentiment_group = get_sentiment_group(article.sentiment)
comparisons = [
{
"Comparison": f"Only found one article: '{article.title}' with a {article.sentiment.lower()} sentiment ({sentiment_group} overall).",
"Impact": f"Limited coverage focused on {topics_str}. More articles would provide a more balanced view."
},
{
"Comparison": f"The article discusses {topics_str} in relation to {article.source}.",
"Impact": "Single source reporting limits perspective. Consider searching for additional sources."
}
]
# Generate overall sentiment analysis
# Combine slightly positive with positive and slightly negative with negative for summary
pos_count = sentiment_counts["Positive"] + sentiment_counts["Slightly Positive"]
neg_count = sentiment_counts["Negative"] + sentiment_counts["Slightly Negative"]
neu_count = sentiment_counts["Neutral"]
total = pos_count + neg_count + neu_count
# For display, we'll keep detailed counts but summarize the analysis text
if total == 0:
final_analysis = "No sentiment data available."
else:
pos_ratio = pos_count / total
neg_ratio = neg_count / total
# Show more details on the sentiment breakdown
sentiment_detail = []
if sentiment_counts["Positive"] > 0:
sentiment_detail.append(f"{sentiment_counts['Positive']} strongly positive")
if sentiment_counts["Slightly Positive"] > 0:
sentiment_detail.append(f"{sentiment_counts['Slightly Positive']} slightly positive")
if sentiment_counts["Neutral"] > 0:
sentiment_detail.append(f"{sentiment_counts['Neutral']} neutral")
if sentiment_counts["Slightly Negative"] > 0:
sentiment_detail.append(f"{sentiment_counts['Slightly Negative']} slightly negative")
if sentiment_counts["Negative"] > 0:
sentiment_detail.append(f"{sentiment_counts['Negative']} strongly negative")
sentiment_breakdown = ", ".join(sentiment_detail)
if pos_ratio > 0.6:
final_analysis = f"The company has primarily positive coverage ({pos_count}/{total} articles positive: {sentiment_breakdown}). This suggests a favorable market perception."
elif neg_ratio > 0.6:
final_analysis = f"The company has primarily negative coverage ({neg_count}/{total} articles negative: {sentiment_breakdown}). This could indicate challenges or controversies."
elif pos_ratio > neg_ratio:
final_analysis = f"The company has mixed coverage with a positive lean ({sentiment_breakdown})."
elif neg_ratio > pos_ratio:
final_analysis = f"The company has mixed coverage with a negative lean ({sentiment_breakdown})."
else:
final_analysis = f"The company has balanced coverage ({sentiment_breakdown})."
# If we only have the dummy article, customize the final analysis
if len(articles) == 1 and articles[0].url == "#":
final_analysis = "Limited news data available. The analysis is based on a placeholder article."
return {
"Sentiment Distribution": sentiment_counts,
"Common Topics": common_topics,
"Topic Overlap": {
"Common Topics Across All": common_topics[:5],
"Unique Topics By Article": unique_topics_by_article
},
"Coverage Differences": comparisons[:10], # Limit to top 10 comparisons
"Final Sentiment Analysis": final_analysis
}
def get_sentiment_group(sentiment: str) -> str:
"""Group sentiments into broader categories for comparison."""
if sentiment in ["Positive", "Slightly Positive"]:
return "Positive"
elif sentiment in ["Negative", "Slightly Negative"]:
return "Negative"
else:
return "Neutral"
def translate_to_hindi(text: str) -> str:
"""Translate text to Hindi using deep_translator."""
try:
# Split text into chunks if too long (Google Translator has a limit)
max_chunk_size = 4500 # deep_translator's GoogleTranslator has a limit of 5000 chars
chunks = [text[i:i+max_chunk_size] for i in range(0, len(text), max_chunk_size)]
translated_chunks = []
for chunk in chunks:
# Translate the chunk
translated = translator.translate(chunk)
translated_chunks.append(translated)
time.sleep(0.5) # Short delay to avoid rate limiting
return ''.join(translated_chunks)
except Exception as e:
print(f"Translation error: {str(e)}")
# Fallback to simple placeholder for Hindi text if translation fails
return "अनुवाद त्रुटि हुई।" # "Translation error occurred" in Hindi
def text_to_speech(text: str, output_file: str = 'output.mp3') -> str:
"""Convert text to speech in Hindi."""
try:
# Ensure output directory exists
output_dir = os.path.dirname(output_file)
if output_dir:
os.makedirs(output_dir, exist_ok=True)
print(f"Ensuring output directory exists: {output_dir}")
# If text is too short, add some padding to avoid TTS errors
if len(text.strip()) < 5:
text = text + " " + "नमस्कार" * 3 # Add some padding text
print("Text was too short, adding padding")
print(f"Attempting to generate TTS for text of length {len(text)} characters")
# For long texts, split into chunks for better TTS quality
if len(text) > 3000:
print("Text is long, splitting into chunks for better TTS quality")
# Split at sentence boundaries
sentences = re.split(r'(।|\.|\?|\!)', text)
chunks = []
current_chunk = ""
# Combine sentences into chunks of appropriate size
for i in range(0, len(sentences), 2):
if i+1 < len(sentences): # Make sure we have the punctuation part
sentence = sentences[i] + sentences[i+1]
else:
sentence = sentences[i]
if len(current_chunk) + len(sentence) < 3000:
current_chunk += sentence
else:
if current_chunk:
chunks.append(current_chunk)
current_chunk = sentence
if current_chunk: # Add the last chunk
chunks.append(current_chunk)
print(f"Split text into {len(chunks)} chunks for TTS processing")
# Process each chunk and combine into one audio file
temp_files = []
for i, chunk in enumerate(chunks):
temp_output = f"{output_file}.part{i}.mp3"
try:
# Try gTTS for each chunk
tts = gTTS(text=chunk, lang='hi', slow=False)
tts.save(temp_output)
if os.path.exists(temp_output) and os.path.getsize(temp_output) > 0:
temp_files.append(temp_output)
else:
print(f"Failed to create chunk {i} with gTTS")
raise Exception(f"gTTS failed for chunk {i}")
except Exception as e:
print(f"Error with gTTS for chunk {i}: {str(e)}")
break
# If we have temp files, combine them
if temp_files:
try:
# Use pydub to concatenate audio files
from pydub import AudioSegment
combined = AudioSegment.empty()
for temp_file in temp_files:
audio = AudioSegment.from_mp3(temp_file)
combined += audio
combined.export(output_file, format="mp3")
# Clean up temp files
for temp_file in temp_files:
try:
os.remove(temp_file)
except:
pass
print(f"Successfully combined {len(temp_files)} audio chunks into {output_file}")
return output_file
except Exception as e:
print(f"Error combining audio files: {str(e)}")
# Try to return the first chunk at least
if os.path.exists(temp_files[0]):
import shutil
shutil.copy(temp_files[0], output_file)
print(f"Returning first chunk as fallback: {output_file}")
return output_file
# Method 1: Use gTTS for Hindi text-to-speech (for shorter texts or if chunking failed)
try:
print("Trying to use gTTS...")
tts = gTTS(text=text, lang='hi', slow=False)
tts.save(output_file)
# Verify the file was created and is not empty
if os.path.exists(output_file) and os.path.getsize(output_file) > 0:
print(f"Successfully created audio file with gTTS: {output_file} (size: {os.path.getsize(output_file)} bytes)")
return output_file
else:
print(f"gTTS created a file but it may be empty or invalid: {output_file}")
raise Exception("Generated audio file is empty or invalid")
except Exception as e:
print(f"gTTS error: {str(e)}")
# Method 2: Fallback to pyttsx3
try:
print("Falling back to pyttsx3...")
engine = pyttsx3.init()
# Try to find a Hindi voice, or use default
voices = engine.getProperty('voices')
found_hindi_voice = False
for voice in voices:
print(f"Checking voice: {voice.name}")
if 'hindi' in voice.name.lower():
print(f"Found Hindi voice: {voice.name}")
engine.setProperty('voice', voice.id)
found_hindi_voice = True
break
if not found_hindi_voice:
print("No Hindi voice found, using default voice")
engine.save_to_file(text, output_file)
engine.runAndWait()
# Verify the file was created and is not empty
if os.path.exists(output_file) and os.path.getsize(output_file) > 0:
print(f"Successfully created audio file with pyttsx3: {output_file} (size: {os.path.getsize(output_file)} bytes)")
return output_file
else:
print(f"pyttsx3 created a file but it may be empty or invalid: {output_file}")
raise Exception("Generated audio file is empty or invalid")
except Exception as e2:
print(f"pyttsx3 error: {str(e2)}")
# If all TTS methods fail, create a simple notification sound as fallback
try:
print("Both TTS methods failed. Creating a simple audio notification instead.")
# Generate a simple beep sound as a fallback (1 second, 440Hz)
import numpy as np
from scipy.io import wavfile
sample_rate = 44100
duration = 1 # seconds
t = np.linspace(0, duration, int(sample_rate * duration))
# Generate a simple tone
frequency = 440 # Hz (A4 note)
data = np.sin(2 * np.pi * frequency * t) * 32767
data = data.astype(np.int16)
# Convert output_file from mp3 to wav
wav_output_file = output_file.replace('.mp3', '.wav')
wavfile.write(wav_output_file, sample_rate, data)
print(f"Created simple audio notification: {wav_output_file}")
return wav_output_file
except Exception as e3:
print(f"Failed to create fallback audio: {str(e3)}")
return ""
return ""
except Exception as e:
print(f"TTS error: {str(e)}")
return ""
def prepare_final_report(company_name: str, articles: List[NewsArticle],
comparative_analysis: Dict[str, Any]) -> Dict[str, Any]:
"""Prepare final report in the required format."""
article_data = []
for article in articles:
article_data.append({
"Title": article.title,
"Summary": article.summary,
"Sentiment": article.sentiment,
"Topics": article.topics
})
# Prepare a more detailed summary for TTS with actual content from articles
summary_text = f"{company_name} के बारे में समाचार विश्लेषण। "
# Add information about the number of articles found
summary_text += f"कुल {len(articles)} लेख मिले। "
# Add sentiment distribution
sentiment_counts = comparative_analysis["Sentiment Distribution"]
pos_count = sentiment_counts["Positive"] + sentiment_counts["Slightly Positive"]
neg_count = sentiment_counts["Negative"] + sentiment_counts["Slightly Negative"]
neu_count = sentiment_counts["Neutral"]
if pos_count > 0 or neg_count > 0 or neu_count > 0:
sentiment_detail = []
if sentiment_counts["Positive"] > 0:
sentiment_detail.append(f"{sentiment_counts['Positive']} पूर्ण सकारात्मक")
if sentiment_counts["Slightly Positive"] > 0:
sentiment_detail.append(f"{sentiment_counts['Slightly Positive']} हल्का सकारात्मक")
if sentiment_counts["Neutral"] > 0:
sentiment_detail.append(f"{sentiment_counts['Neutral']} तटस्थ")
if sentiment_counts["Slightly Negative"] > 0:
sentiment_detail.append(f"{sentiment_counts['Slightly Negative']} हल्का नकारात्मक")
if sentiment_counts["Negative"] > 0:
sentiment_detail.append(f"{sentiment_counts['Negative']} पूर्ण नकारात्मक")
summary_text += f"भावना विश्लेषण: {', '.join(sentiment_detail)}। "
# Add common topics with more detail
common_topics = comparative_analysis["Common Topics"][:5]
if common_topics:
summary_text += f"मुख्य विषय हैं: {', '.join(common_topics)}। "
# Add more context about the common topics
summary_text += "इन विषयों के बारे में लेखों में यह कहा गया है: "
# Find sentences related to common topics in the articles
topic_sentences = []
for topic in common_topics[:3]: # Focus on top 3 topics
found = False
for article in articles:
if topic in article.content.lower():
# Find sentences containing this topic
sentences = sent_tokenize(article.content)
for sentence in sentences:
if topic in sentence.lower() and len(sentence) < 150:
topic_sentences.append(f"{topic} के बारे में: {sentence}")
found = True
break
if found:
break
if topic_sentences:
summary_text += " ".join(topic_sentences[:3]) + " "
# Add article summaries
summary_text += "लेखों का सारांश: "
for i, article in enumerate(articles[:3]): # Include up to 3 articles
summary_text += f"लेख {i+1}: {article.title}. {article.summary[:200]}... "
# Add sentiment for this specific article
summary_text += f"इस लेख का भावना: {article.sentiment}. "
# Add final sentiment analysis
summary_text += comparative_analysis["Final Sentiment Analysis"]
# Translate the detailed summary to Hindi
hindi_summary = translate_to_hindi(summary_text)
# Format the response according to the required format
return {
"Company": company_name,
"Articles": article_data,
"Comparative Sentiment Score": comparative_analysis,
"Final Sentiment Analysis": comparative_analysis["Final Sentiment Analysis"],
"Hindi Summary": hindi_summary
} |