File size: 13,600 Bytes
47af8ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
from fastapi import FastAPI, HTTPException, Response, File, UploadFile, Form
from fastapi.responses import FileResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Dict, Any, Optional
import os
import json
import uuid
import asyncio
import uvicorn
from utils import (search_news, analyze_article_sentiment, perform_comparative_analysis,
translate_to_hindi, text_to_speech, prepare_final_report, NewsArticle)
# Initialize FastAPI app
app = FastAPI(
title="News Summarization and TTS API",
description="API for extracting news, performing sentiment analysis, and generating Hindi TTS audio",
version="1.0.0"
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Allow all origins
allow_credentials=True,
allow_methods=["*"], # Allow all methods
allow_headers=["*"], # Allow all headers
)
# Define request/response models
class CompanyRequest(BaseModel):
company_name: str
class TextToSpeechRequest(BaseModel):
text: str
output_filename: Optional[str] = None
class SentimentAnalysisRequest(BaseModel):
articles: List[Dict[str, Any]]
class NewsResponse(BaseModel):
articles: List[Dict[str, Any]]
class SentimentResponse(BaseModel):
sentiment_analysis: Dict[str, Any]
class TextToSpeechResponse(BaseModel):
audio_file: str
text: str
# Create a directory for audio files if it doesn't exist
os.makedirs("audio_files", exist_ok=True)
# API endpoints
@app.get("/")
async def root():
"""Root endpoint to check if API is running."""
return {"message": "News Summarization and TTS API is running"}
@app.post("/api/get_news", response_model=NewsResponse)
async def get_news(request: CompanyRequest):
"""Fetch news articles about a specific company."""
try:
company_name = request.company_name
articles = search_news(company_name)
if not articles:
raise HTTPException(status_code=404, detail=f"No news articles found for {company_name}")
# Convert NewsArticle objects to dictionaries
article_data = [article.to_dict() for article in articles]
return {"articles": article_data}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/analyze_sentiment", response_model=SentimentResponse)
async def analyze_sentiment(request: SentimentAnalysisRequest):
"""Analyze sentiment of provided articles."""
try:
# Convert dictionaries back to NewsArticle objects
articles = []
for article_dict in request.articles:
article = NewsArticle(
title=article_dict["title"],
url=article_dict["url"],
content=article_dict["content"],
summary=article_dict.get("summary", ""),
source=article_dict.get("source", ""),
date=article_dict.get("date", ""),
sentiment=article_dict.get("sentiment", ""),
topics=article_dict.get("topics", [])
)
articles.append(article)
# Perform detailed sentiment analysis for each article
detailed_sentiment = [analyze_article_sentiment(article) for article in articles]
# Perform comparative analysis
comparative_analysis = perform_comparative_analysis(articles)
return {
"sentiment_analysis": {
"detailed_sentiment": detailed_sentiment,
"comparative_analysis": comparative_analysis
}
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/generate_speech", response_model=TextToSpeechResponse)
async def generate_speech(request: TextToSpeechRequest):
"""Convert text to Hindi speech."""
try:
text = request.text
# Generate a unique filename if not provided
output_filename = request.output_filename
if not output_filename:
unique_id = uuid.uuid4().hex
output_filename = f"audio_files/{unique_id}.mp3"
elif not output_filename.startswith("audio_files/"):
output_filename = f"audio_files/{output_filename}"
# Translate text to Hindi
hindi_text = translate_to_hindi(text)
# Convert text to speech
audio_file = text_to_speech(hindi_text, output_filename)
if not audio_file:
raise HTTPException(status_code=500, detail="Failed to generate audio file")
return {
"audio_file": audio_file,
"text": hindi_text
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/complete_analysis")
async def complete_analysis(request: CompanyRequest):
"""Perform complete analysis for a company."""
try:
company_name = request.company_name
# Log the start of analysis
print(f"Starting complete analysis for company: {company_name}")
# Step 1: Get news articles
print("Step 1: Fetching news articles...")
articles = search_news(company_name, num_articles=5) # Increased from default 3 to 5
print(f"Found {len(articles)} articles for {company_name}")
if not articles:
raise HTTPException(status_code=404, detail=f"No news articles found for {company_name}")
# Step 2: Perform comparative analysis
print("Step 2: Performing comparative analysis...")
comparative_analysis = perform_comparative_analysis(articles)
print("Comparative analysis completed")
# Step 3: Prepare final report
print("Step 3: Preparing final report...")
final_report = prepare_final_report(company_name, articles, comparative_analysis)
print("Final report prepared")
# Step 4: Generate Hindi TTS
print("Step 4: Generating Hindi TTS...")
unique_id = uuid.uuid4().hex
output_filename = f"audio_files/{unique_id}.mp3"
# Use the Hindi summary for TTS
hindi_text = final_report["Hindi Summary"]
print(f"Converting Hindi text to speech (length: {len(hindi_text)} characters)")
audio_file = text_to_speech(hindi_text, output_filename)
# Format the response to match the example output exactly
formatted_response = {
"Company": company_name,
"Articles": final_report["Articles"],
"Comparative Sentiment Score": {
"Sentiment Distribution": comparative_analysis["Sentiment Distribution"],
"Coverage Differences": comparative_analysis["Coverage Differences"],
"Topic Overlap": {
"Common Topics": comparative_analysis["Topic Overlap"]["Common Topics Across All"],
}
},
"Final Sentiment Analysis": comparative_analysis["Final Sentiment Analysis"],
}
# Format the unique topics by article to match the expected output exactly
unique_topics = comparative_analysis["Topic Overlap"]["Unique Topics By Article"]
for article_idx, topics in unique_topics.items():
article_num = int(article_idx) + 1
formatted_response["Comparative Sentiment Score"]["Topic Overlap"][f"Unique Topics in Article {article_num}"] = topics
# If we don't have more than 1 article, create some example comparisons to match format
if len(articles) <= 1:
formatted_response["Comparative Sentiment Score"]["Coverage Differences"] = [
{
"Comparison": f"Only one article about {company_name} was found, limiting comparative analysis.",
"Impact": "Unable to compare coverage across multiple sources for more comprehensive insights."
}
]
# Add audio information
if not audio_file:
print("Warning: Failed to generate audio file")
formatted_response["Audio"] = "Failed to generate audio"
else:
print(f"Audio file generated: {audio_file}")
formatted_response["Audio"] = f"[Play Hindi Speech]"
# Store the actual audio file path in a hidden field
formatted_response["_audio_file_path"] = audio_file
# Add the Hindi Summary to the response as well (needed for rendering in Streamlit)
formatted_response["Hindi Summary"] = final_report["Hindi Summary"]
print("Complete analysis finished successfully")
return formatted_response
except HTTPException as he:
# Re-raise HTTP exceptions
print(f"HTTP Exception: {he.detail}")
raise
except Exception as e:
# For any other exception, provide detailed error information
import traceback
error_trace = traceback.format_exc()
error_message = f"Error processing request: {str(e)}"
print(f"ERROR: {error_message}")
print(f"Traceback: {error_trace}")
# Return a more user-friendly error message
user_message = "An error occurred during analysis. "
if "timeout" in str(e).lower():
user_message += "There was a timeout when connecting to news sources. Please try again or try another company name."
elif "connection" in str(e).lower():
user_message += "There was a connection issue with one of the news sources. Please check your internet connection."
elif "not found" in str(e).lower():
user_message += f"No information could be found for {company_name}. Please try another company name."
else:
user_message += "Please try again with a different company name or check the server logs for more details."
raise HTTPException(status_code=500, detail=user_message)
@app.get("/api/audio/{file_name}")
async def get_audio(file_name: str):
"""Serve audio files."""
file_path = f"audio_files/{file_name}"
# Make sure the audio_files directory exists
os.makedirs("audio_files", exist_ok=True)
if not os.path.exists(file_path):
print(f"Audio file not found: {file_path}")
# Check if any audio files exist in the directory
audio_files = os.listdir("audio_files") if os.path.exists("audio_files") else []
print(f"Available audio files: {audio_files}")
raise HTTPException(status_code=404, detail=f"Audio file {file_name} not found")
try:
# Verify the file can be opened and is not corrupt
with open(file_path, "rb") as f:
file_size = os.path.getsize(file_path)
print(f"Serving audio file: {file_path} (size: {file_size} bytes)")
if file_size == 0:
raise HTTPException(status_code=500, detail="Audio file is empty")
except Exception as e:
print(f"Error accessing audio file {file_path}: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error accessing audio file: {str(e)}")
# Set appropriate headers for audio file
headers = {
"Cache-Control": "no-cache, no-store, must-revalidate",
"Pragma": "no-cache",
"Expires": "0",
"Content-Disposition": f"attachment; filename={file_name}"
}
# Determine the correct media type based on file extension
media_type = "audio/mpeg"
if file_name.lower().endswith(".wav"):
media_type = "audio/wav"
return FileResponse(
path=file_path,
media_type=media_type,
headers=headers,
filename=file_name
)
@app.post("/api/example_format")
async def get_example_format(request: CompanyRequest):
"""
Get analysis results in the example format specified.
This endpoint provides results that exactly match the requested output format.
"""
try:
# Get the base analysis
company_name = request.company_name
result = await complete_analysis(request)
# Format it to match the example output
formatted_output = {
"Company": result["Company"],
"Articles": result["Articles"],
"Comparative Sentiment Score": {
"Sentiment Distribution": result["Comparative Sentiment Score"]["Sentiment Distribution"],
"Coverage Differences": result["Comparative Sentiment Score"]["Coverage Differences"],
"Topic Overlap": result["Comparative Sentiment Score"]["Topic Overlap"]
},
"Final Sentiment Analysis": result["Final Sentiment Analysis"],
"Audio": "[Play Hindi Speech]" if result.get("Audio") else "No audio available"
}
return formatted_output
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error generating example format: {str(e)}")
if __name__ == "__main__":
uvicorn.run("api:app", host="0.0.0.0", port=8000, reload=True) |