Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,39 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import datetime
|
5 |
|
6 |
-
#
|
7 |
st.set_page_config(
|
8 |
page_title="Qwen2.5-Coder Chat",
|
9 |
page_icon="π¬",
|
10 |
layout="wide"
|
11 |
)
|
12 |
|
|
|
|
|
|
|
13 |
# Initialize session state for conversation history
|
14 |
if 'messages' not in st.session_state:
|
15 |
st.session_state.messages = []
|
16 |
|
17 |
-
# Cache
|
18 |
@st.cache_resource
|
19 |
def load_model_and_tokenizer():
|
20 |
-
model_name = "Qwen/Qwen2.5-Coder-7B-Instruct" #
|
21 |
-
|
22 |
# Load tokenizer
|
23 |
tokenizer = AutoTokenizer.from_pretrained(
|
24 |
model_name,
|
25 |
trust_remote_code=True
|
26 |
)
|
27 |
-
|
28 |
-
#
|
29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
st.info(f"Using device: {device}")
|
31 |
-
|
32 |
-
# Load model
|
33 |
if device == "cuda":
|
34 |
model = AutoModelForCausalLM.from_pretrained(
|
35 |
model_name,
|
@@ -48,7 +52,7 @@ def load_model_and_tokenizer():
|
|
48 |
|
49 |
return tokenizer, model
|
50 |
|
51 |
-
#
|
52 |
st.title("π¬ Qwen2.5-Coder Chat")
|
53 |
|
54 |
# Sidebar settings
|
@@ -58,7 +62,7 @@ with st.sidebar:
|
|
58 |
max_length = st.slider(
|
59 |
"Maximum Length",
|
60 |
min_value=64,
|
61 |
-
max_value=2048,
|
62 |
value=512,
|
63 |
step=64,
|
64 |
help="Maximum number of tokens to generate"
|
@@ -86,7 +90,7 @@ with st.sidebar:
|
|
86 |
st.session_state.messages = []
|
87 |
st.rerun()
|
88 |
|
89 |
-
# Load model with
|
90 |
try:
|
91 |
with st.spinner("Loading model... Please wait..."):
|
92 |
tokenizer, model = load_model_and_tokenizer()
|
@@ -94,13 +98,12 @@ except Exception as e:
|
|
94 |
st.error(f"Error loading model: {str(e)}")
|
95 |
st.stop()
|
96 |
|
|
|
97 |
def generate_response(prompt, max_new_tokens=512, temperature=0.7, top_p=0.9):
|
98 |
"""Generate response from the model"""
|
99 |
try:
|
100 |
-
# Tokenize input
|
101 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
102 |
|
103 |
-
# Generate response
|
104 |
with torch.no_grad():
|
105 |
outputs = model.generate(
|
106 |
**inputs,
|
@@ -112,24 +115,21 @@ def generate_response(prompt, max_new_tokens=512, temperature=0.7, top_p=0.9):
|
|
112 |
eos_token_id=tokenizer.eos_token_id,
|
113 |
)
|
114 |
|
115 |
-
# Decode and return response
|
116 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
117 |
-
# Extract only the
|
118 |
-
response = response[len(prompt):].strip()
|
119 |
-
return response
|
120 |
|
121 |
except Exception as e:
|
122 |
st.error(f"Error generating response: {str(e)}")
|
123 |
return None
|
124 |
|
125 |
-
# Display
|
126 |
for message in st.session_state.messages:
|
127 |
with st.chat_message(message["role"]):
|
128 |
st.write(f"{message['content']}\n\n_{message['timestamp']}_")
|
129 |
|
130 |
# Chat input
|
131 |
if prompt := st.chat_input("Ask me anything about coding..."):
|
132 |
-
# Add user message
|
133 |
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
134 |
st.session_state.messages.append({
|
135 |
"role": "user",
|
@@ -144,14 +144,11 @@ if prompt := st.chat_input("Ask me anything about coding..."):
|
|
144 |
# Generate and display response
|
145 |
with st.chat_message("assistant"):
|
146 |
with st.spinner("Thinking..."):
|
147 |
-
# Prepare conversation
|
148 |
-
conversation = ""
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
else:
|
153 |
-
conversation += f"Assistant: {msg['content']}\n"
|
154 |
-
conversation += "Assistant:"
|
155 |
|
156 |
response = generate_response(
|
157 |
conversation,
|
@@ -164,9 +161,9 @@ if prompt := st.chat_input("Ask me anything about coding..."):
|
|
164 |
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
165 |
st.write(f"{response}\n\n_{timestamp}_")
|
166 |
|
167 |
-
# Add
|
168 |
st.session_state.messages.append({
|
169 |
"role": "assistant",
|
170 |
"content": response,
|
171 |
"timestamp": timestamp
|
172 |
-
})
|
|
|
1 |
+
import os
|
2 |
import streamlit as st
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import datetime
|
6 |
|
7 |
+
# Set up page configuration
|
8 |
st.set_page_config(
|
9 |
page_title="Qwen2.5-Coder Chat",
|
10 |
page_icon="π¬",
|
11 |
layout="wide"
|
12 |
)
|
13 |
|
14 |
+
# Set cache directory explicitly
|
15 |
+
os.environ["TRANSFORMERS_CACHE"] = "/root/.cache/huggingface"
|
16 |
+
|
17 |
# Initialize session state for conversation history
|
18 |
if 'messages' not in st.session_state:
|
19 |
st.session_state.messages = []
|
20 |
|
21 |
+
# Cache model loading
|
22 |
@st.cache_resource
|
23 |
def load_model_and_tokenizer():
|
24 |
+
model_name = "Qwen/Qwen2.5-Coder-7B-Instruct" # Model identifier
|
25 |
+
|
26 |
# Load tokenizer
|
27 |
tokenizer = AutoTokenizer.from_pretrained(
|
28 |
model_name,
|
29 |
trust_remote_code=True
|
30 |
)
|
31 |
+
|
32 |
+
# Device configuration
|
33 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
34 |
st.info(f"Using device: {device}")
|
35 |
+
|
36 |
+
# Load model
|
37 |
if device == "cuda":
|
38 |
model = AutoModelForCausalLM.from_pretrained(
|
39 |
model_name,
|
|
|
52 |
|
53 |
return tokenizer, model
|
54 |
|
55 |
+
# Title
|
56 |
st.title("π¬ Qwen2.5-Coder Chat")
|
57 |
|
58 |
# Sidebar settings
|
|
|
62 |
max_length = st.slider(
|
63 |
"Maximum Length",
|
64 |
min_value=64,
|
65 |
+
max_value=2048,
|
66 |
value=512,
|
67 |
step=64,
|
68 |
help="Maximum number of tokens to generate"
|
|
|
90 |
st.session_state.messages = []
|
91 |
st.rerun()
|
92 |
|
93 |
+
# Load model with caching
|
94 |
try:
|
95 |
with st.spinner("Loading model... Please wait..."):
|
96 |
tokenizer, model = load_model_and_tokenizer()
|
|
|
98 |
st.error(f"Error loading model: {str(e)}")
|
99 |
st.stop()
|
100 |
|
101 |
+
# Response generation function
|
102 |
def generate_response(prompt, max_new_tokens=512, temperature=0.7, top_p=0.9):
|
103 |
"""Generate response from the model"""
|
104 |
try:
|
|
|
105 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
106 |
|
|
|
107 |
with torch.no_grad():
|
108 |
outputs = model.generate(
|
109 |
**inputs,
|
|
|
115 |
eos_token_id=tokenizer.eos_token_id,
|
116 |
)
|
117 |
|
|
|
118 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
119 |
+
return response[len(prompt):].strip() # Extract only the response
|
|
|
|
|
120 |
|
121 |
except Exception as e:
|
122 |
st.error(f"Error generating response: {str(e)}")
|
123 |
return None
|
124 |
|
125 |
+
# Display conversation history
|
126 |
for message in st.session_state.messages:
|
127 |
with st.chat_message(message["role"]):
|
128 |
st.write(f"{message['content']}\n\n_{message['timestamp']}_")
|
129 |
|
130 |
# Chat input
|
131 |
if prompt := st.chat_input("Ask me anything about coding..."):
|
132 |
+
# Add user message
|
133 |
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
134 |
st.session_state.messages.append({
|
135 |
"role": "user",
|
|
|
144 |
# Generate and display response
|
145 |
with st.chat_message("assistant"):
|
146 |
with st.spinner("Thinking..."):
|
147 |
+
# Prepare conversation context
|
148 |
+
conversation = "\n".join(
|
149 |
+
f"{'Human' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}"
|
150 |
+
for msg in st.session_state.messages
|
151 |
+
) + "\nAssistant:"
|
|
|
|
|
|
|
152 |
|
153 |
response = generate_response(
|
154 |
conversation,
|
|
|
161 |
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
162 |
st.write(f"{response}\n\n_{timestamp}_")
|
163 |
|
164 |
+
# Add response to chat history
|
165 |
st.session_state.messages.append({
|
166 |
"role": "assistant",
|
167 |
"content": response,
|
168 |
"timestamp": timestamp
|
169 |
+
})
|