Spaces:
Runtime error
Runtime error
File size: 9,234 Bytes
b35040f f564269 b35040f f564269 5eaee65 b35040f 7a742e9 f564269 c3ffb57 f564269 c3ffb57 f564269 c3ffb57 f564269 c3ffb57 f564269 c3ffb57 f564269 c3ffb57 f564269 c3ffb57 f564269 c3ffb57 5eaee65 f564269 7a742e9 f564269 7a742e9 f564269 c3ffb57 b35040f f564269 b35040f f564269 b35040f 5eaee65 f564269 5eaee65 f564269 b35040f f564269 b35040f f564269 b35040f 5eaee65 f564269 b35040f 5eaee65 b35040f f564269 b35040f f564269 b35040f f564269 5eaee65 b35040f f564269 5eaee65 f564269 b35040f f564269 b35040f f564269 b35040f f564269 b35040f f564269 b35040f f564269 b35040f f564269 b35040f f564269 ec99653 f564269 b35040f f564269 b35040f f564269 b35040f 7a742e9 f564269 b35040f f564269 b35040f f564269 b35040f 5eaee65 f564269 5eaee65 b35040f f564269 b35040f f564269 b35040f f564269 b35040f f564269 b35040f f564269 b35040f f564269 b35040f f564269 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download
from snac import SNAC
import time # Import the time module
from dotenv import load_dotenv
from optimum.bettertransformer import BetterTransformer
load_dotenv()
# Check if CUDA is available, otherwise use CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# 1. Load SNAC Model (for audio decoding)
print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)
snac_model.eval() # Set SNAC to evaluation mode
# 2. Load Orpheus Language Model (for text-to-token generation)
model_name = "canopylabs/orpheus-3b-0.1-ft"
# Download only necessary files (config and safetensors)
print("Downloading Orpheus model files...")
snapshot_download(
repo_id=model_name,
allow_patterns=[
"config.json",
".safetensors",
"model.safetensors.index.json",
],
ignore_patterns=[
"optimizer.pt",
"pytorch_model.bin",
"training_args.bin",
"scheduler.pt",
"tokenizer.json",
"tokenizer_config.json",
"special_tokens_map.json",
"vocab.json",
"merges.txt",
"tokenizer."
]
)
print("Loading Orpheus model...")
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
# --- Optimization 1: Convert to BetterTransformer ---
try:
model = BetterTransformer.transform(model)
print("Model converted to BetterTransformer for faster inference.")
except Exception as e:
print(f"BetterTransformer conversion failed: {e}. Proceeding without it.")
model.to(device)
model.eval() # Set the Orpheus model to evaluation mode
tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f"Orpheus model loaded to {device}")
# --- Function Definitions ---
def process_prompt(prompt, voice, tokenizer, device):
"""Processes the text prompt and converts it to input IDs."""
prompt = f"{voice}: {prompt}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) # SOH SOT Text EOT EOH
# No padding needed for single input
attention_mask = torch.ones_like(modified_input_ids)
return modified_input_ids.to(device), attention_mask.to(device)
def parse_output(generated_ids):
"""Parses the generated token IDs to extract the audio codes."""
token_to_find = 128257 # SOT token
token_to_remove = 128258 # EOT token
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx + 1:]
else:
cropped_tensor = generated_ids
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != token_to_remove]
processed_rows.append(masked_row)
code_lists = []
for row in processed_rows:
row_length = row.size(0)
new_length = (row_length // 7) * 7 # Ensure divisibility by 7
trimmed_row = row[:new_length]
trimmed_row = [t - 128266 for t in trimmed_row] # Adjust code values
code_lists.append(trimmed_row)
return code_lists[0] # Return codes for the first (and only) sequence
def redistribute_codes(code_list, snac_model):
"""Redistributes the audio codes into the format required by SNAC."""
device = next(snac_model.parameters()).device # Get the device of SNAC model
layer_1 = []
layer_2 = []
layer_3 = []
for i in range(len(code_list) // 7): # Corrected loop condition
layer_1.append(code_list[7*i])
layer_2.append(code_list[7*i+1]-4096)
layer_3.append(code_list[7*i+2]-(2*4096))
layer_3.append(code_list[7*i+3]-(3*4096))
layer_2.append(code_list[7*i+4]-(4*4096))
layer_3.append(code_list[7*i+5]-(5*4096))
layer_3.append(code_list[7*i+6]-(6*4096))
# Move tensors to the same device as the SNAC model
codes = [
torch.tensor(layer_1, device=device).unsqueeze(0),
torch.tensor(layer_2, device=device).unsqueeze(0),
torch.tensor(layer_3, device=device).unsqueeze(0)
]
audio_hat = snac_model.decode(codes)
return audio_hat.detach().squeeze().cpu().numpy() # Return CPU numpy array
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
"""Generates speech from the given text using Orpheus and SNAC."""
if not text.strip():
return None
try:
start_time = time.time() # Start timing
progress(0.1, "Processing text...")
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
process_time = time.time() - start_time
print(f"Text processing time: {process_time:.2f} seconds")
start_time = time.time() # Reset timer
progress(0.3, "Generating speech tokens...")
with torch.no_grad():
generated_ids = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
num_return_sequences=1,
eos_token_id=128258,
)
generation_time = time.time() - start_time
print(f"Token generation time: {generation_time:.2f} seconds")
start_time = time.time() # Reset timer
progress(0.6, "Processing speech tokens...")
code_list = parse_output(generated_ids)
parse_time = time.time() - start_time
print(f"Token parsing time: {parse_time:.2f} seconds")
start_time = time.time() # Reset timer
progress(0.8, "Converting to audio...")
audio_samples = redistribute_codes(code_list, snac_model)
audio_time = time.time() - start_time
print(f"Audio conversion time: {audio_time:.2f} seconds")
return (24000, audio_samples) # Return sample rate and audio
except Exception as e:
print(f"Error generating speech: {e}")
return None
# --- Gradio Interface Setup ---
examples = [
["Hey there my name is Tara, <chuckle> and I'm a speech generation model that can sound like a person.", "tara", 0.6, 0.95, 1.1, 1200],
["I've also been taught to understand and produce paralinguistic things like sighing, or chuckling, or yawning!", "dan", 0.7, 0.95, 1.1, 1200],
["I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... well, lets just say a lot of parameters.", "emma", 0.6, 0.9, 1.2, 1200]
]
VOICES = ["tara", "dan", "josh", "emma"]
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
gr.Markdown("""
# 🎵 Orpheus Text-to-Speech
Enter text below to convert to speech.
""")
with gr.Row():
with gr.Column(scale=3):
text_input = gr.Textbox(
label="Text to speak",
placeholder="Enter your text here...",
lines=5
)
voice = gr.Dropdown(
choices=VOICES,
value="tara",
label="Voice"
)
with gr.Accordion("Advanced Settings", open=False):
temperature = gr.Slider(
minimum=0.1, maximum=1.5, value=0.6, step=0.05,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
label="Top P"
)
repetition_penalty = gr.Slider(
minimum=1.0, maximum=2.0, value=1.1, step=0.05,
label="Repetition Penalty"
)
max_new_tokens = gr.Slider(
minimum=100, maximum=2000, value=1200, step=100,
label="Max Length"
)
with gr.Row():
submit_btn = gr.Button("Generate Speech", variant="primary")
clear_btn = gr.Button("Clear")
with gr.Column(scale=2):
audio_output = gr.Audio(label="Generated Speech", type="numpy")
gr.Examples(
examples=examples,
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
outputs=audio_output,
fn=generate_speech,
cache_examples=True,
)
submit_btn.click(
fn=generate_speech,
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
outputs=audio_output
)
clear_btn.click(
fn=lambda: (None, None),
inputs=[],
outputs=[text_input, audio_output]
)
if __name__ == "__main__":
demo.queue().launch(share=False) |