File size: 9,512 Bytes
92acddd
 
63faa06
 
 
92acddd
 
 
 
 
63faa06
92acddd
 
 
 
63faa06
92acddd
 
 
 
346197d
92acddd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63faa06
92acddd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63faa06
92acddd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63faa06
92acddd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
346197d
92acddd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63faa06
92acddd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# app.py

import gradio as gr
from transformers import AutoTokenizer
import onnxruntime as ort
import numpy as np
import os # Import os module to check if model directory exists
import time # To measure performance (optional)

print("Loading libraries...")

# --- Configuration ---
# Define the local directory where the downloaded model files are stored.
# This path MUST match where you downloaded the model files relative to this script.
model_dir = "cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4"

# --- Model Loading ---
tokenizer = None
session = None
model_load_error = None

# Check if the model directory exists before attempting to load
if not os.path.isdir(model_dir):
    model_load_error = (
        f"Error: Model directory not found at '{os.path.abspath(model_dir)}'\n"
        "Please ensure you have created the directory structure\n"
        f"'./{model_dir}' relative to this script ({os.path.basename(__file__)})\n"
        "and downloaded ALL the required model files into it from:\n"
        "https://huggingface.co./microsoft/Phi-4-mini-instruct-onnx/tree/main/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4"
    )
    print(model_load_error)
else:
    print(f"Found model directory: {os.path.abspath(model_dir)}")
    print("Loading tokenizer...")
    try:
        # Load tokenizer associated with the Phi-4 model variant
        tokenizer = AutoTokenizer.from_pretrained(model_dir)
        print("Tokenizer loaded successfully.")
    except Exception as e:
        model_load_error = f"Error loading tokenizer from {model_dir}: {e}"
        print(model_load_error)

    # Only attempt to load session if tokenizer loaded successfully
    if tokenizer:
        print("Loading ONNX model session...")
        model_path = os.path.join(model_dir, "model.onnx")
        model_data_path = os.path.join(model_dir, "model.onnx.data")

        if not os.path.exists(model_path):
             model_load_error = f"Error: 'model.onnx' not found in {model_dir}"
             print(model_load_error)
        elif not os.path.exists(model_data_path):
             model_load_error = f"Error: 'model.onnx.data' not found in {model_dir}. This large file contains the model weights and is required."
             print(model_load_error)
        else:
            try:
                # Load the ONNX model using ONNX Runtime for CPU execution
                start_time = time.time()
                # You can configure session options for performance if needed
                # sess_options = ort.SessionOptions()
                # sess_options.intra_op_num_threads = 4 # Example: Limit threads
                session = ort.InferenceSession(
                    model_path,
                    providers=["CPUExecutionProvider"]
                    # sess_options=sess_options # Uncomment to use options
                )
                end_time = time.time()
                print(f"ONNX model session loaded successfully using CPU provider in {end_time - start_time:.2f} seconds.")
            except Exception as e:
                model_load_error = f"Error loading ONNX session from {model_path}: {e}\n"
                model_load_error += "Ensure 'onnxruntime' library is installed correctly and that both 'model.onnx' and 'model.onnx.data' are valid files."
                print(model_load_error)

# --- Inference Function ---
def generate_response(prompt):
    """
    Generates a response from the loaded ONNX model based on the user prompt.
    """
    global tokenizer, session, model_load_error # Allow access to global vars

    # Check if model loading failed earlier
    if model_load_error:
        return model_load_error
    if not tokenizer or not session:
        return "Error: Model or Tokenizer is not loaded correctly. Check console output."

    print(f"\nReceived prompt: {prompt}")
    start_time = time.time()

    # Format the prompt with specific markers for instruction following
    full_prompt = f"<|user|>\n{prompt}\n<|assistant|>\n"
    print("Tokenizing input...")

    try:
        # Tokenize the formatted prompt
        inputs = tokenizer(full_prompt, return_tensors="np")

        # Prepare inputs for the ONNX model
        ort_inputs = {
            "input_ids": inputs["input_ids"].astype(np.int64),
            "attention_mask": inputs["attention_mask"].astype(np.int64)
        }
        print("Running model inference...")
        inference_start_time = time.time()

        # Run the ONNX model inference
        outputs = session.run(None, ort_inputs)
        generated_ids = outputs[0] # Assuming the first output contains the generated IDs

        inference_end_time = time.time()
        print(f"Inference complete in {inference_end_time - inference_start_time:.2f} seconds.")

        # Decode the generated token IDs back into text
        print("Decoding response...")
        decoding_start_time = time.time()
        # Ensure generated_ids is 1D if necessary, might be shape (1, sequence_length)
        output_ids = generated_ids[0] if generated_ids.ndim == 2 else generated_ids
        response = tokenizer.decode(output_ids, skip_special_tokens=True)
        decoding_end_time = time.time()
        print(f"Decoding complete in {decoding_end_time - decoding_start_time:.2f} seconds.")

        # --- Response Cleaning ---
        # 1. Find the start of the assistant's response
        assistant_marker = "<|assistant|>"
        assistant_pos = response.find(assistant_marker)

        if assistant_pos != -1:
            # If marker found, take text after it
            cleaned_response = response[assistant_pos + len(assistant_marker):].strip()
        else:
            # Fallback: If marker isn't perfectly decoded, try removing the original input prompt
            # This assumes the model might prepend the input sometimes.
            # Remove the prompt part *without* the final <|assistant|> tag
            prompt_part_to_remove = full_prompt.rsplit(assistant_marker, 1)[0]
            if response.startswith(prompt_part_to_remove):
                 cleaned_response = response[len(prompt_part_to_remove):].strip()
            else:
                 # If neither works well, return the raw response (might contain parts of the prompt)
                 cleaned_response = response.strip()
                 print("Warning: Could not reliably clean the prompt context from the response.")


        total_time = time.time() - start_time
        print(f"Generated response: {cleaned_response}")
        print(f"Total processing time for this prompt: {total_time:.2f} seconds.")
        return cleaned_response

    except Exception as e:
        print(f"Error during model inference or decoding: {e}")
        import traceback
        traceback.print_exc() # Print detailed traceback for debugging
        return f"Error during generation: {e}"

# --- Gradio Interface Setup ---
print("Setting up Gradio interface...")

# Define CSS for better layout (optional)
css = """
#output_textbox textarea {
  min-height: 300px; /* Make output box taller */
}
#input_textbox textarea {
  min-height: 100px; /* Adjust input box height */
}
"""

demo = gr.Blocks(css=css, theme=gr.themes.Default()) # Use Blocks for more layout control

with demo:
    gr.Markdown(
        """
        # Phi-4-Mini ONNX Chatbot (Local CPU)
        Interact with the `microsoft/Phi-4-mini-instruct-onnx` model variant
        (`cpu-int4-rtn-block-32-acc-level-4`) running locally using ONNX Runtime on your CPU.
        """
    )
    with gr.Row():
        with gr.Column(scale=2): # Input column
             input_textbox = gr.Textbox(
                 label="Your Prompt",
                 placeholder="Type your question or instruction here...",
                 lines=4, # Initial lines, resizable
                 elem_id="input_textbox" # Assign ID for CSS
             )
             submit_button = gr.Button("Generate Response", variant="primary")
        with gr.Column(scale=3): # Output column
             output_textbox = gr.Textbox(
                 label="AI Response",
                 lines=10, # Initial lines, resizable
                 interactive=False, # User cannot type in the output box
                 elem_id="output_textbox" # Assign ID for CSS
            )

    # Display model loading status/errors
    if model_load_error:
        gr.Markdown(f"**<font color='red'>Model Loading Error:</font>**\n```\n{model_load_error}\n```")
    elif session is None or tokenizer is None:
         gr.Markdown("**<font color='orange'>Warning:</font>** Model or tokenizer did not load correctly. Check console logs.")
    else:
         gr.Markdown("**<font color='green'>Model and Tokenizer Loaded Successfully.</font>**")

    # Connect button click to the function
    submit_button.click(
        fn=generate_response,
        inputs=input_textbox,
        outputs=output_textbox
    )

    # Allow submitting by pressing Enter in the input textbox
    input_textbox.submit(
         fn=generate_response,
         inputs=input_textbox,
         outputs=output_textbox
    )

# --- Launch the Application ---
print("-" * 50)
print("Launching Gradio app...")
print("You can access it in your browser at the URL provided below (usually http://127.0.0.1:7860).")
print("Press CTRL+C in this terminal to stop the application.")
print("-" * 50)

# share=True creates a temporary public link (use with caution).
# Set debug=True for more detailed Gradio errors if needed.
demo.launch(share=False, debug=False)

print("Gradio app closed.")