import whisper from transformers import pipeline AUDIO_FILE = "D:/SER MiniProj/temp_audio.wav" # Load Whisper model for transcription whisper_model = whisper.load_model("base") # You can use "small", "medium", or "large" for better accuracy # Transcribe the audio transcription = whisper_model.transcribe(AUDIO_FILE)["text"] print(f"📝 Transcribed Text: {transcription}") # Load summarization model summarizer = pipeline("summarization", model="t5-base", framework="pt") # Generate summary summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"] print(f"📌 Summary: {summary}")