Spaces:
Sleeping
Sleeping
File size: 648 Bytes
1f75494 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
import whisper
from transformers import pipeline
AUDIO_FILE = "D:/SER MiniProj/temp_audio.wav"
# Load Whisper model for transcription
whisper_model = whisper.load_model("base") # You can use "small", "medium", or "large" for better accuracy
# Transcribe the audio
transcription = whisper_model.transcribe(AUDIO_FILE)["text"]
print(f"π Transcribed Text: {transcription}")
# Load summarization model
summarizer = pipeline("summarization", model="t5-base", framework="pt")
# Generate summary
summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
print(f"π Summary: {summary}") |