Update app.py
Browse files
app.py
CHANGED
@@ -18,10 +18,6 @@ from openpyxl.utils import get_column_letter
|
|
18 |
from io import BytesIO
|
19 |
import base64
|
20 |
import hashlib
|
21 |
-
import requests
|
22 |
-
import tempfile
|
23 |
-
from pathlib import Path
|
24 |
-
import mimetypes
|
25 |
|
26 |
# Configure logging
|
27 |
logging.basicConfig(level=logging.INFO)
|
@@ -36,17 +32,6 @@ CONFIDENCE_THRESHOLD = 0.65
|
|
36 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
37 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
38 |
|
39 |
-
# IMPORTANT: Set PyTorch thread configuration at the module level
|
40 |
-
# before any parallel work starts
|
41 |
-
if not torch.cuda.is_available():
|
42 |
-
# Set thread configuration only once at the beginning
|
43 |
-
torch.set_num_threads(MAX_WORKERS)
|
44 |
-
try:
|
45 |
-
# Only set interop threads if it hasn't been set already
|
46 |
-
torch.set_num_interop_threads(MAX_WORKERS)
|
47 |
-
except RuntimeError as e:
|
48 |
-
logger.warning(f"Could not set interop threads: {str(e)}")
|
49 |
-
|
50 |
# Get password hash from environment variable (more secure)
|
51 |
ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH')
|
52 |
|
@@ -56,138 +41,10 @@ if not ADMIN_PASSWORD_HASH:
|
|
56 |
# Excel file path for logs
|
57 |
EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"
|
58 |
|
59 |
-
# OCR API settings
|
60 |
-
OCR_API_KEY = "9e11346f1288957" # This is a partial key - replace with the full one
|
61 |
-
OCR_API_ENDPOINT = "https://api.ocr.space/parse/image"
|
62 |
-
OCR_MAX_PDF_PAGES = 3
|
63 |
-
OCR_MAX_FILE_SIZE_MB = 1
|
64 |
-
|
65 |
-
# Configure logging for OCR module
|
66 |
-
ocr_logger = logging.getLogger("ocr_module")
|
67 |
-
ocr_logger.setLevel(logging.INFO)
|
68 |
-
|
69 |
-
class OCRProcessor:
|
70 |
-
"""
|
71 |
-
Handles OCR processing of image and document files using OCR.space API
|
72 |
-
"""
|
73 |
-
def __init__(self, api_key: str = OCR_API_KEY):
|
74 |
-
self.api_key = api_key
|
75 |
-
self.endpoint = OCR_API_ENDPOINT
|
76 |
-
|
77 |
-
def process_file(self, file_path: str) -> Dict:
|
78 |
-
"""
|
79 |
-
Process a file using OCR.space API
|
80 |
-
"""
|
81 |
-
start_time = time.time()
|
82 |
-
ocr_logger.info(f"Starting OCR processing for file: {os.path.basename(file_path)}")
|
83 |
-
|
84 |
-
# Validate file size
|
85 |
-
file_size_mb = os.path.getsize(file_path) / (1024 * 1024)
|
86 |
-
if file_size_mb > OCR_MAX_FILE_SIZE_MB:
|
87 |
-
ocr_logger.warning(f"File size ({file_size_mb:.2f} MB) exceeds limit of {OCR_MAX_FILE_SIZE_MB} MB")
|
88 |
-
return {
|
89 |
-
"success": False,
|
90 |
-
"error": f"File size ({file_size_mb:.2f} MB) exceeds limit of {OCR_MAX_FILE_SIZE_MB} MB",
|
91 |
-
"text": ""
|
92 |
-
}
|
93 |
-
|
94 |
-
# Determine file type and handle accordingly
|
95 |
-
file_type = self._get_file_type(file_path)
|
96 |
-
ocr_logger.info(f"Detected file type: {file_type}")
|
97 |
-
|
98 |
-
# Prepare the API request
|
99 |
-
with open(file_path, 'rb') as f:
|
100 |
-
file_data = f.read()
|
101 |
-
|
102 |
-
# Set up API parameters
|
103 |
-
payload = {
|
104 |
-
'isOverlayRequired': 'false',
|
105 |
-
'language': 'eng',
|
106 |
-
'OCREngine': '2', # Use more accurate engine
|
107 |
-
'scale': 'true',
|
108 |
-
'detectOrientation': 'true',
|
109 |
-
}
|
110 |
-
|
111 |
-
# For PDF files, check page count limitations
|
112 |
-
if file_type == 'application/pdf':
|
113 |
-
ocr_logger.info("PDF document detected, enforcing page limit")
|
114 |
-
payload['filetype'] = 'PDF'
|
115 |
-
|
116 |
-
# Prepare file for OCR API
|
117 |
-
files = {
|
118 |
-
'file': (os.path.basename(file_path), file_data, file_type)
|
119 |
-
}
|
120 |
-
|
121 |
-
headers = {
|
122 |
-
'apikey': self.api_key,
|
123 |
-
}
|
124 |
-
|
125 |
-
# Make the OCR API request
|
126 |
-
try:
|
127 |
-
ocr_logger.info("Sending request to OCR.space API")
|
128 |
-
response = requests.post(
|
129 |
-
self.endpoint,
|
130 |
-
files=files,
|
131 |
-
data=payload,
|
132 |
-
headers=headers
|
133 |
-
)
|
134 |
-
response.raise_for_status()
|
135 |
-
result = response.json()
|
136 |
-
|
137 |
-
# Process the OCR results
|
138 |
-
if result.get('OCRExitCode') in [1, 2]: # Success or partial success
|
139 |
-
extracted_text = self._extract_text_from_result(result)
|
140 |
-
processing_time = time.time() - start_time
|
141 |
-
ocr_logger.info(f"OCR processing completed in {processing_time:.2f} seconds")
|
142 |
-
|
143 |
-
return {
|
144 |
-
"success": True,
|
145 |
-
"text": extracted_text,
|
146 |
-
"word_count": len(extracted_text.split()),
|
147 |
-
"processing_time_ms": int(processing_time * 1000)
|
148 |
-
}
|
149 |
-
else:
|
150 |
-
ocr_logger.error(f"OCR API error: {result.get('ErrorMessage', 'Unknown error')}")
|
151 |
-
return {
|
152 |
-
"success": False,
|
153 |
-
"error": result.get('ErrorMessage', 'OCR processing failed'),
|
154 |
-
"text": ""
|
155 |
-
}
|
156 |
-
|
157 |
-
except requests.exceptions.RequestException as e:
|
158 |
-
ocr_logger.error(f"OCR API request failed: {str(e)}")
|
159 |
-
return {
|
160 |
-
"success": False,
|
161 |
-
"error": f"OCR API request failed: {str(e)}",
|
162 |
-
"text": ""
|
163 |
-
}
|
164 |
-
|
165 |
-
def _extract_text_from_result(self, result: Dict) -> str:
|
166 |
-
"""
|
167 |
-
Extract all text from the OCR API result
|
168 |
-
"""
|
169 |
-
extracted_text = ""
|
170 |
-
|
171 |
-
if 'ParsedResults' in result and result['ParsedResults']:
|
172 |
-
for parsed_result in result['ParsedResults']:
|
173 |
-
if parsed_result.get('ParsedText'):
|
174 |
-
extracted_text += parsed_result['ParsedText']
|
175 |
-
|
176 |
-
return extracted_text
|
177 |
-
|
178 |
-
def _get_file_type(self, file_path: str) -> str:
|
179 |
-
"""
|
180 |
-
Determine MIME type of a file
|
181 |
-
"""
|
182 |
-
mime_type, _ = mimetypes.guess_type(file_path)
|
183 |
-
if mime_type is None:
|
184 |
-
# Default to binary if MIME type can't be determined
|
185 |
-
return 'application/octet-stream'
|
186 |
-
return mime_type
|
187 |
-
|
188 |
def is_admin_password(input_text: str) -> bool:
|
189 |
"""
|
190 |
Check if the input text matches the admin password using secure hash comparison.
|
|
|
191 |
"""
|
192 |
# Hash the input text
|
193 |
input_hash = hashlib.sha256(input_text.strip().encode()).hexdigest()
|
@@ -248,6 +105,11 @@ class TextWindowProcessor:
|
|
248 |
|
249 |
class TextClassifier:
|
250 |
def __init__(self):
|
|
|
|
|
|
|
|
|
|
|
251 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
252 |
self.model_name = MODEL_NAME
|
253 |
self.tokenizer = None
|
@@ -282,7 +144,6 @@ class TextClassifier:
|
|
282 |
|
283 |
self.model.eval()
|
284 |
|
285 |
-
# [Other TextClassifier methods remain the same as in paste.txt]
|
286 |
def quick_scan(self, text: str) -> Dict:
|
287 |
"""Perform a quick scan using simple window analysis."""
|
288 |
if not text.strip():
|
@@ -392,7 +253,7 @@ class TextClassifier:
|
|
392 |
for window_idx, indices in enumerate(batch_indices):
|
393 |
center_idx = len(indices) // 2
|
394 |
center_weight = 0.7 # Higher weight for center sentence
|
395 |
-
edge_weight = 0.3 / (len(indices) - 1)
|
396 |
|
397 |
for pos, sent_idx in enumerate(indices):
|
398 |
# Apply higher weight to center sentence
|
@@ -415,10 +276,10 @@ class TextClassifier:
|
|
415 |
|
416 |
# Apply minimal smoothing at prediction boundaries
|
417 |
if i > 0 and i < len(sentences) - 1:
|
418 |
-
prev_human = sentence_scores[i-1]['human_prob'] /
|
419 |
-
prev_ai = sentence_scores[i-1]['ai_prob'] /
|
420 |
-
next_human = sentence_scores[i+1]['human_prob'] /
|
421 |
-
next_ai = sentence_scores[i+1]['ai_prob'] /
|
422 |
|
423 |
# Check if we're at a prediction boundary
|
424 |
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
@@ -493,72 +354,6 @@ class TextClassifier:
|
|
493 |
'num_sentences': num_sentences
|
494 |
}
|
495 |
|
496 |
-
# Function to handle file upload, OCR processing, and text analysis
|
497 |
-
def handle_file_upload_and_analyze(file_obj, mode: str, classifier) -> tuple:
|
498 |
-
"""
|
499 |
-
Handle file upload, OCR processing, and text analysis
|
500 |
-
"""
|
501 |
-
if file_obj is None:
|
502 |
-
return (
|
503 |
-
"No file uploaded",
|
504 |
-
"Please upload a file to analyze",
|
505 |
-
"No file uploaded for analysis"
|
506 |
-
)
|
507 |
-
|
508 |
-
# Create a temporary file with an appropriate extension based on content
|
509 |
-
content_start = file_obj[:20] # Look at the first few bytes
|
510 |
-
|
511 |
-
# Default to .bin extension
|
512 |
-
file_ext = ".bin"
|
513 |
-
|
514 |
-
# Try to detect PDF files
|
515 |
-
if content_start.startswith(b'%PDF'):
|
516 |
-
file_ext = ".pdf"
|
517 |
-
# For images, detect by common magic numbers
|
518 |
-
elif content_start.startswith(b'\xff\xd8'): # JPEG
|
519 |
-
file_ext = ".jpg"
|
520 |
-
elif content_start.startswith(b'\x89PNG'): # PNG
|
521 |
-
file_ext = ".png"
|
522 |
-
elif content_start.startswith(b'GIF'): # GIF
|
523 |
-
file_ext = ".gif"
|
524 |
-
|
525 |
-
# Create a temporary file with the detected extension
|
526 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=file_ext) as temp_file:
|
527 |
-
temp_file_path = temp_file.name
|
528 |
-
# Write uploaded file data to the temporary file
|
529 |
-
temp_file.write(file_obj)
|
530 |
-
|
531 |
-
try:
|
532 |
-
# Process the file with OCR
|
533 |
-
ocr_processor = OCRProcessor()
|
534 |
-
ocr_result = ocr_processor.process_file(temp_file_path)
|
535 |
-
|
536 |
-
if not ocr_result["success"]:
|
537 |
-
return (
|
538 |
-
"OCR Processing Error",
|
539 |
-
ocr_result["error"],
|
540 |
-
"Failed to extract text from the uploaded file"
|
541 |
-
)
|
542 |
-
|
543 |
-
# Get the extracted text
|
544 |
-
extracted_text = ocr_result["text"]
|
545 |
-
|
546 |
-
# If no text was extracted
|
547 |
-
if not extracted_text.strip():
|
548 |
-
return (
|
549 |
-
"No text extracted",
|
550 |
-
"The OCR process did not extract any text from the uploaded file.",
|
551 |
-
"No text was found in the uploaded file"
|
552 |
-
)
|
553 |
-
|
554 |
-
# Call the original text analysis function with the extracted text
|
555 |
-
return analyze_text(extracted_text, mode, classifier)
|
556 |
-
|
557 |
-
finally:
|
558 |
-
# Clean up the temporary file
|
559 |
-
if os.path.exists(temp_file_path):
|
560 |
-
os.remove(temp_file_path)
|
561 |
-
|
562 |
def initialize_excel_log():
|
563 |
"""Initialize the Excel log file if it doesn't exist."""
|
564 |
if not os.path.exists(EXCEL_LOG_PATH):
|
@@ -586,7 +381,6 @@ def initialize_excel_log():
|
|
586 |
wb.save(EXCEL_LOG_PATH)
|
587 |
logger.info(f"Initialized Excel log file at {EXCEL_LOG_PATH}")
|
588 |
|
589 |
-
|
590 |
def log_prediction_data(input_text, word_count, prediction, confidence, execution_time, mode):
|
591 |
"""Log prediction data to an Excel file in the /tmp directory."""
|
592 |
# Initialize the Excel file if it doesn't exist
|
@@ -629,7 +423,6 @@ def log_prediction_data(input_text, word_count, prediction, confidence, executio
|
|
629 |
logger.error(f"Error logging prediction data to Excel: {str(e)}")
|
630 |
return False
|
631 |
|
632 |
-
|
633 |
def get_logs_as_base64():
|
634 |
"""Read the Excel logs file and return as base64 for downloading."""
|
635 |
if not os.path.exists(EXCEL_LOG_PATH):
|
@@ -648,7 +441,6 @@ def get_logs_as_base64():
|
|
648 |
logger.error(f"Error reading Excel logs: {str(e)}")
|
649 |
return None
|
650 |
|
651 |
-
|
652 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
653 |
"""Analyze text using specified mode and return formatted results."""
|
654 |
# Check if the input text matches the admin password using secure comparison
|
@@ -771,146 +563,47 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
771 |
# Initialize the classifier globally
|
772 |
classifier = TextClassifier()
|
773 |
|
774 |
-
# Create Gradio interface
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
# Create a custom CSS class
|
790 |
-
css = """
|
791 |
-
#analyze-btn {
|
792 |
-
background-color: #FF8C00 !important;
|
793 |
-
border-color: #FF8C00 !important;
|
794 |
-
color: white !important;
|
795 |
-
}
|
796 |
-
|
797 |
-
.radio-with-icon {
|
798 |
-
display: flex;
|
799 |
-
align-items: center;
|
800 |
-
}
|
801 |
-
|
802 |
-
.paperclip-icon {
|
803 |
-
display: inline-block;
|
804 |
-
margin-left: 10px;
|
805 |
-
font-size: 20px;
|
806 |
-
cursor: pointer;
|
807 |
-
opacity: 0.7;
|
808 |
-
}
|
809 |
-
|
810 |
-
.paperclip-icon:hover {
|
811 |
-
opacity: 1;
|
812 |
-
}
|
813 |
-
"""
|
814 |
-
|
815 |
-
# Create the interface with custom CSS
|
816 |
-
with gr.Blocks(title="AI Text Detector", css=css) as demo:
|
817 |
-
gr.Markdown("# AI Text Detector")
|
818 |
-
|
819 |
-
with gr.Row():
|
820 |
-
# Left column - Input
|
821 |
-
with gr.Column():
|
822 |
-
text_input = gr.Textbox(
|
823 |
-
lines=8,
|
824 |
-
placeholder="Enter text to analyze...",
|
825 |
-
label="Input Text"
|
826 |
-
)
|
827 |
-
|
828 |
-
gr.Markdown("Analysis Mode")
|
829 |
-
gr.Markdown("Quick mode for faster analysis. Detailed mode for sentence-level analysis.")
|
830 |
-
|
831 |
-
# Create a visible radio button row
|
832 |
-
with gr.Row(elem_classes=["radio-with-icon"]):
|
833 |
-
mode_selection = gr.Radio(
|
834 |
-
choices=["quick", "detailed"],
|
835 |
-
value="quick",
|
836 |
-
label=""
|
837 |
-
)
|
838 |
-
|
839 |
-
# Create a button that looks like a paperclip and triggers file upload
|
840 |
-
upload_trigger = gr.Button("📎", elem_classes=["paperclip-icon"])
|
841 |
-
|
842 |
-
# Hidden file upload that will be triggered by the paperclip button
|
843 |
-
file_upload = gr.File(
|
844 |
-
file_types=["image", "pdf", "doc", "docx"],
|
845 |
-
type="binary",
|
846 |
-
visible=False
|
847 |
-
)
|
848 |
-
|
849 |
-
# Action buttons
|
850 |
-
with gr.Row():
|
851 |
-
clear_btn = gr.Button("Clear")
|
852 |
-
analyze_btn = gr.Button("Analyze Text", elem_id="analyze-btn")
|
853 |
-
|
854 |
-
# Right column - Results
|
855 |
-
with gr.Column():
|
856 |
-
output_html = gr.HTML(label="Highlighted Analysis")
|
857 |
-
output_sentences = gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10)
|
858 |
-
output_result = gr.Textbox(label="Overall Result", lines=4)
|
859 |
-
|
860 |
-
# Connect the components
|
861 |
-
analyze_btn.click(
|
862 |
-
analyze_text_wrapper,
|
863 |
-
inputs=[text_input, mode_selection],
|
864 |
-
outputs=[output_html, output_sentences, output_result]
|
865 |
)
|
866 |
-
|
867 |
-
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
# Setup the app with CORS middleware
|
892 |
-
def setup_app():
|
893 |
-
demo = setup_interface()
|
894 |
-
|
895 |
-
# Get the FastAPI app from Gradio
|
896 |
-
app = demo.app
|
897 |
-
|
898 |
-
# Add CORS middleware
|
899 |
-
app.add_middleware(
|
900 |
-
CORSMiddleware,
|
901 |
-
allow_origins=["*"], # For development
|
902 |
-
allow_credentials=True,
|
903 |
-
allow_methods=["GET", "POST", "OPTIONS"],
|
904 |
-
allow_headers=["*"],
|
905 |
-
)
|
906 |
-
|
907 |
-
return demo
|
908 |
-
|
909 |
-
# Initialize the application
|
910 |
if __name__ == "__main__":
|
911 |
-
demo = setup_app()
|
912 |
-
|
913 |
-
# Start the server
|
914 |
demo.queue()
|
915 |
demo.launch(
|
916 |
server_name="0.0.0.0",
|
|
|
18 |
from io import BytesIO
|
19 |
import base64
|
20 |
import hashlib
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Configure logging
|
23 |
logging.basicConfig(level=logging.INFO)
|
|
|
32 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
33 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# Get password hash from environment variable (more secure)
|
36 |
ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH')
|
37 |
|
|
|
41 |
# Excel file path for logs
|
42 |
EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def is_admin_password(input_text: str) -> bool:
|
45 |
"""
|
46 |
Check if the input text matches the admin password using secure hash comparison.
|
47 |
+
This prevents the password from being visible in the source code.
|
48 |
"""
|
49 |
# Hash the input text
|
50 |
input_hash = hashlib.sha256(input_text.strip().encode()).hexdigest()
|
|
|
105 |
|
106 |
class TextClassifier:
|
107 |
def __init__(self):
|
108 |
+
# Set thread configuration before any model loading or parallel work
|
109 |
+
if not torch.cuda.is_available():
|
110 |
+
torch.set_num_threads(MAX_WORKERS)
|
111 |
+
torch.set_num_interop_threads(MAX_WORKERS)
|
112 |
+
|
113 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
114 |
self.model_name = MODEL_NAME
|
115 |
self.tokenizer = None
|
|
|
144 |
|
145 |
self.model.eval()
|
146 |
|
|
|
147 |
def quick_scan(self, text: str) -> Dict:
|
148 |
"""Perform a quick scan using simple window analysis."""
|
149 |
if not text.strip():
|
|
|
253 |
for window_idx, indices in enumerate(batch_indices):
|
254 |
center_idx = len(indices) // 2
|
255 |
center_weight = 0.7 # Higher weight for center sentence
|
256 |
+
edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
257 |
|
258 |
for pos, sent_idx in enumerate(indices):
|
259 |
# Apply higher weight to center sentence
|
|
|
276 |
|
277 |
# Apply minimal smoothing at prediction boundaries
|
278 |
if i > 0 and i < len(sentences) - 1:
|
279 |
+
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
280 |
+
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
281 |
+
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
282 |
+
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
283 |
|
284 |
# Check if we're at a prediction boundary
|
285 |
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
|
|
354 |
'num_sentences': num_sentences
|
355 |
}
|
356 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
def initialize_excel_log():
|
358 |
"""Initialize the Excel log file if it doesn't exist."""
|
359 |
if not os.path.exists(EXCEL_LOG_PATH):
|
|
|
381 |
wb.save(EXCEL_LOG_PATH)
|
382 |
logger.info(f"Initialized Excel log file at {EXCEL_LOG_PATH}")
|
383 |
|
|
|
384 |
def log_prediction_data(input_text, word_count, prediction, confidence, execution_time, mode):
|
385 |
"""Log prediction data to an Excel file in the /tmp directory."""
|
386 |
# Initialize the Excel file if it doesn't exist
|
|
|
423 |
logger.error(f"Error logging prediction data to Excel: {str(e)}")
|
424 |
return False
|
425 |
|
|
|
426 |
def get_logs_as_base64():
|
427 |
"""Read the Excel logs file and return as base64 for downloading."""
|
428 |
if not os.path.exists(EXCEL_LOG_PATH):
|
|
|
441 |
logger.error(f"Error reading Excel logs: {str(e)}")
|
442 |
return None
|
443 |
|
|
|
444 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
445 |
"""Analyze text using specified mode and return formatted results."""
|
446 |
# Check if the input text matches the admin password using secure comparison
|
|
|
563 |
# Initialize the classifier globally
|
564 |
classifier = TextClassifier()
|
565 |
|
566 |
+
# Create Gradio interface
|
567 |
+
demo = gr.Interface(
|
568 |
+
fn=lambda text, mode: analyze_text(text, mode, classifier),
|
569 |
+
inputs=[
|
570 |
+
gr.Textbox(
|
571 |
+
lines=8,
|
572 |
+
placeholder="Enter text to analyze...",
|
573 |
+
label="Input Text"
|
574 |
+
),
|
575 |
+
gr.Radio(
|
576 |
+
choices=["quick", "detailed"],
|
577 |
+
value="quick",
|
578 |
+
label="Analysis Mode",
|
579 |
+
info="Quick mode for faster analysis, Detailed mode for sentence-level analysis"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
580 |
)
|
581 |
+
],
|
582 |
+
outputs=[
|
583 |
+
gr.HTML(label="Highlighted Analysis"),
|
584 |
+
gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10),
|
585 |
+
gr.Textbox(label="Overall Result", lines=4)
|
586 |
+
],
|
587 |
+
title="AI Text Detector",
|
588 |
+
description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.",
|
589 |
+
api_name="predict",
|
590 |
+
flagging_mode="never"
|
591 |
+
)
|
592 |
+
|
593 |
+
# Get the FastAPI app from Gradio
|
594 |
+
app = demo.app
|
595 |
+
|
596 |
+
# Add CORS middleware
|
597 |
+
app.add_middleware(
|
598 |
+
CORSMiddleware,
|
599 |
+
allow_origins=["*"], # For development
|
600 |
+
allow_credentials=True,
|
601 |
+
allow_methods=["GET", "POST", "OPTIONS"],
|
602 |
+
allow_headers=["*"],
|
603 |
+
)
|
604 |
+
|
605 |
+
# Ensure CORS is applied before launching
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
606 |
if __name__ == "__main__":
|
|
|
|
|
|
|
607 |
demo.queue()
|
608 |
demo.launch(
|
609 |
server_name="0.0.0.0",
|