Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,12 @@ import gradio as gr
|
|
10 |
from fastapi.middleware.cors import CORSMiddleware
|
11 |
from concurrent.futures import ThreadPoolExecutor
|
12 |
from functools import partial
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Configure logging
|
15 |
logging.basicConfig(level=logging.INFO)
|
@@ -24,6 +30,153 @@ CONFIDENCE_THRESHOLD = 0.65
|
|
24 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
25 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
class TextWindowProcessor:
|
28 |
def __init__(self):
|
29 |
try:
|
@@ -176,100 +329,6 @@ class TextClassifier:
|
|
176 |
'num_windows': len(predictions)
|
177 |
}
|
178 |
|
179 |
-
# def detailed_scan(self, text: str) -> Dict:
|
180 |
-
# """Original prediction method with modified window handling"""
|
181 |
-
# if self.model is None or self.tokenizer is None:
|
182 |
-
# self.load_model()
|
183 |
-
|
184 |
-
# self.model.eval()
|
185 |
-
# sentences = self.processor.split_into_sentences(text)
|
186 |
-
# if not sentences:
|
187 |
-
# return {}
|
188 |
-
|
189 |
-
# # Create centered windows for each sentence
|
190 |
-
# windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
191 |
-
|
192 |
-
# # Track scores for each sentence
|
193 |
-
# sentence_appearances = {i: 0 for i in range(len(sentences))}
|
194 |
-
# sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
195 |
-
|
196 |
-
# # Process windows in batches
|
197 |
-
# batch_size = 16
|
198 |
-
# for i in range(0, len(windows), batch_size):
|
199 |
-
# batch_windows = windows[i:i + batch_size]
|
200 |
-
# batch_indices = window_sentence_indices[i:i + batch_size]
|
201 |
-
|
202 |
-
# inputs = self.tokenizer(
|
203 |
-
# batch_windows,
|
204 |
-
# truncation=True,
|
205 |
-
# padding=True,
|
206 |
-
# max_length=MAX_LENGTH,
|
207 |
-
# return_tensors="pt"
|
208 |
-
# ).to(self.device)
|
209 |
-
|
210 |
-
# with torch.no_grad():
|
211 |
-
# outputs = self.model(**inputs)
|
212 |
-
# probs = F.softmax(outputs.logits, dim=-1)
|
213 |
-
|
214 |
-
# # Attribute predictions more carefully
|
215 |
-
# for window_idx, indices in enumerate(batch_indices):
|
216 |
-
# center_idx = len(indices) // 2
|
217 |
-
# center_weight = 0.7 # Higher weight for center sentence
|
218 |
-
# edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
219 |
-
|
220 |
-
# for pos, sent_idx in enumerate(indices):
|
221 |
-
# # Apply higher weight to center sentence
|
222 |
-
# weight = center_weight if pos == center_idx else edge_weight
|
223 |
-
# sentence_appearances[sent_idx] += weight
|
224 |
-
# sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
225 |
-
# sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
226 |
-
|
227 |
-
# del inputs, outputs, probs
|
228 |
-
# if torch.cuda.is_available():
|
229 |
-
# torch.cuda.empty_cache()
|
230 |
-
|
231 |
-
# # Calculate final predictions
|
232 |
-
# sentence_predictions = []
|
233 |
-
# for i in range(len(sentences)):
|
234 |
-
# if sentence_appearances[i] > 0:
|
235 |
-
# human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
236 |
-
# ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
237 |
-
|
238 |
-
# # Only apply minimal smoothing at prediction boundaries
|
239 |
-
# if i > 0 and i < len(sentences) - 1:
|
240 |
-
# prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
241 |
-
# prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
242 |
-
# next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
243 |
-
# next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
244 |
-
|
245 |
-
# # Check if we're at a prediction boundary
|
246 |
-
# current_pred = 'human' if human_prob > ai_prob else 'ai'
|
247 |
-
# prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
248 |
-
# next_pred = 'human' if next_human > next_ai else 'ai'
|
249 |
-
|
250 |
-
# if current_pred != prev_pred or current_pred != next_pred:
|
251 |
-
# # Small adjustment at boundaries
|
252 |
-
# smooth_factor = 0.1
|
253 |
-
# human_prob = (human_prob * (1 - smooth_factor) +
|
254 |
-
# (prev_human + next_human) * smooth_factor / 2)
|
255 |
-
# ai_prob = (ai_prob * (1 - smooth_factor) +
|
256 |
-
# (prev_ai + next_ai) * smooth_factor / 2)
|
257 |
-
|
258 |
-
# sentence_predictions.append({
|
259 |
-
# 'sentence': sentences[i],
|
260 |
-
# 'human_prob': human_prob,
|
261 |
-
# 'ai_prob': ai_prob,
|
262 |
-
# 'prediction': 'human' if human_prob > ai_prob else 'ai',
|
263 |
-
# 'confidence': max(human_prob, ai_prob)
|
264 |
-
# })
|
265 |
-
|
266 |
-
# return {
|
267 |
-
# 'sentence_predictions': sentence_predictions,
|
268 |
-
# 'highlighted_text': self.format_predictions_html(sentence_predictions),
|
269 |
-
# 'full_text': text,
|
270 |
-
# 'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
271 |
-
# }
|
272 |
-
|
273 |
def detailed_scan(self, text: str) -> Dict:
|
274 |
"""Perform a detailed scan with improved sentence-level analysis."""
|
275 |
# Clean up trailing whitespace
|
@@ -420,8 +479,14 @@ class TextClassifier:
|
|
420 |
'num_sentences': num_sentences
|
421 |
}
|
422 |
|
|
|
|
|
|
|
423 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
424 |
"""Analyze text using specified mode and return formatted results."""
|
|
|
|
|
|
|
425 |
# Count words in the text
|
426 |
word_count = len(text.split())
|
427 |
|
@@ -432,31 +497,55 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
432 |
|
433 |
if mode == "quick":
|
434 |
result = classifier.quick_scan(text)
|
|
|
|
|
|
|
435 |
|
436 |
quick_analysis = f"""
|
437 |
-
PREDICTION: {
|
438 |
-
Confidence: {
|
439 |
-
Windows analyzed: {
|
440 |
"""
|
441 |
|
442 |
# Add note if mode was switched
|
443 |
if original_mode == "detailed":
|
444 |
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
|
445 |
|
446 |
-
|
447 |
text, # No highlighting in quick mode
|
448 |
"Quick scan mode - no sentence-level analysis available",
|
449 |
quick_analysis
|
450 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
451 |
else:
|
452 |
analysis = classifier.detailed_scan(text)
|
|
|
|
|
|
|
453 |
|
454 |
detailed_analysis = []
|
455 |
for pred in analysis['sentence_predictions']:
|
456 |
-
|
457 |
detailed_analysis.append(f"Sentence: {pred['sentence']}")
|
458 |
detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}")
|
459 |
-
detailed_analysis.append(f"Confidence: {
|
460 |
detailed_analysis.append("-" * 50)
|
461 |
|
462 |
final_pred = analysis['overall_prediction']
|
@@ -466,16 +555,35 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
466 |
Number of sentences analyzed: {final_pred['num_sentences']}
|
467 |
"""
|
468 |
|
469 |
-
|
470 |
analysis['highlighted_text'],
|
471 |
"\n".join(detailed_analysis),
|
472 |
overall_result
|
473 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
474 |
|
475 |
# Initialize the classifier globally
|
476 |
classifier = TextClassifier()
|
477 |
|
478 |
-
# Create Gradio interface
|
479 |
demo = gr.Interface(
|
480 |
fn=lambda text, mode: analyze_text(text, mode, classifier),
|
481 |
inputs=[
|
@@ -497,7 +605,7 @@ demo = gr.Interface(
|
|
497 |
gr.Textbox(label="Overall Result", lines=4)
|
498 |
],
|
499 |
title="AI Text Detector",
|
500 |
-
description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.",
|
501 |
api_name="predict",
|
502 |
flagging_mode="never"
|
503 |
)
|
|
|
10 |
from fastapi.middleware.cors import CORSMiddleware
|
11 |
from concurrent.futures import ThreadPoolExecutor
|
12 |
from functools import partial
|
13 |
+
import time
|
14 |
+
import pandas as pd
|
15 |
+
from datetime import datetime
|
16 |
+
import threading
|
17 |
+
import random
|
18 |
+
from openpyxl import load_workbook
|
19 |
|
20 |
# Configure logging
|
21 |
logging.basicConfig(level=logging.INFO)
|
|
|
30 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
31 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
32 |
|
33 |
+
class ExcelLogger:
|
34 |
+
def __init__(self, log_dir="logs", excel_file=None):
|
35 |
+
"""Initialize the Excel logger.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
log_dir: Directory to store log files
|
39 |
+
excel_file: Specific Excel file name (defaults to predictions_YYYY-MM.xlsx)
|
40 |
+
"""
|
41 |
+
self.log_dir = log_dir
|
42 |
+
os.makedirs(log_dir, exist_ok=True)
|
43 |
+
|
44 |
+
# Use monthly Excel files by default
|
45 |
+
if excel_file is None:
|
46 |
+
current_month = datetime.now().strftime('%Y-%m')
|
47 |
+
excel_file = f"predictions_{current_month}.xlsx"
|
48 |
+
|
49 |
+
self.excel_path = os.path.join(log_dir, excel_file)
|
50 |
+
|
51 |
+
# Create excel file with headers if it doesn't exist
|
52 |
+
if not os.path.exists(self.excel_path):
|
53 |
+
self._create_excel_file()
|
54 |
+
|
55 |
+
# Create a lock for thread safety
|
56 |
+
self.file_lock = threading.Lock()
|
57 |
+
|
58 |
+
def _create_excel_file(self):
|
59 |
+
"""Create a new Excel file with appropriate sheets and headers."""
|
60 |
+
# Create DataFrame for metrics
|
61 |
+
metrics_df = pd.DataFrame(columns=[
|
62 |
+
'timestamp', 'word_count', 'mode', 'prediction',
|
63 |
+
'confidence', 'prediction_time_seconds', 'num_sentences'
|
64 |
+
])
|
65 |
+
|
66 |
+
# Create DataFrame for text storage
|
67 |
+
text_df = pd.DataFrame(columns=[
|
68 |
+
'entry_id', 'timestamp', 'text'
|
69 |
+
])
|
70 |
+
|
71 |
+
# Create Excel writer
|
72 |
+
with pd.ExcelWriter(self.excel_path, engine='openpyxl') as writer:
|
73 |
+
metrics_df.to_excel(writer, sheet_name='Metrics', index=False)
|
74 |
+
text_df.to_excel(writer, sheet_name='TextData', index=False)
|
75 |
+
|
76 |
+
logger.info(f"Created new Excel log file: {self.excel_path}")
|
77 |
+
|
78 |
+
def log_prediction(self, prediction_data, store_text=True):
|
79 |
+
"""Log prediction data to the Excel file.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
prediction_data: Dictionary containing prediction metrics
|
83 |
+
store_text: Whether to store the full text
|
84 |
+
"""
|
85 |
+
# Generate a unique entry ID
|
86 |
+
entry_id = f"{datetime.now().strftime('%Y%m%d%H%M%S')}_{random.randint(1000, 9999)}"
|
87 |
+
|
88 |
+
# Extract text if present
|
89 |
+
text = prediction_data.pop('text', None) if store_text else None
|
90 |
+
|
91 |
+
# Ensure timestamp is present
|
92 |
+
if 'timestamp' not in prediction_data:
|
93 |
+
prediction_data['timestamp'] = datetime.now().isoformat()
|
94 |
+
|
95 |
+
# Add entry_id to the metrics
|
96 |
+
metrics_data = prediction_data.copy()
|
97 |
+
metrics_data['entry_id'] = entry_id
|
98 |
+
|
99 |
+
# Start a thread to write data to Excel
|
100 |
+
thread = threading.Thread(
|
101 |
+
target=self._write_to_excel,
|
102 |
+
args=(metrics_data, text, entry_id, store_text)
|
103 |
+
)
|
104 |
+
thread.daemon = True
|
105 |
+
thread.start()
|
106 |
+
|
107 |
+
def _write_to_excel(self, metrics_data, text, entry_id, store_text):
|
108 |
+
"""Write data to Excel file with retry mechanism for concurrent access."""
|
109 |
+
max_retries = 5
|
110 |
+
retry_delay = 0.5
|
111 |
+
|
112 |
+
for attempt in range(max_retries):
|
113 |
+
try:
|
114 |
+
with self.file_lock:
|
115 |
+
# Load existing data
|
116 |
+
metrics_df = pd.read_excel(self.excel_path, sheet_name='Metrics')
|
117 |
+
|
118 |
+
# Append new metrics data
|
119 |
+
new_metrics = pd.DataFrame([metrics_data])
|
120 |
+
metrics_df = pd.concat([metrics_df, new_metrics], ignore_index=True)
|
121 |
+
|
122 |
+
# If text storage is requested
|
123 |
+
if store_text and text:
|
124 |
+
try:
|
125 |
+
text_df = pd.read_excel(self.excel_path, sheet_name='TextData')
|
126 |
+
|
127 |
+
# Append new text data
|
128 |
+
new_text = pd.DataFrame([{
|
129 |
+
'entry_id': entry_id,
|
130 |
+
'timestamp': metrics_data['timestamp'],
|
131 |
+
'text': text
|
132 |
+
}])
|
133 |
+
text_df = pd.concat([text_df, new_text], ignore_index=True)
|
134 |
+
except:
|
135 |
+
# If TextData sheet doesn't exist or can't be read
|
136 |
+
text_df = pd.DataFrame([{
|
137 |
+
'entry_id': entry_id,
|
138 |
+
'timestamp': metrics_data['timestamp'],
|
139 |
+
'text': text
|
140 |
+
}])
|
141 |
+
|
142 |
+
# Write back to Excel
|
143 |
+
with pd.ExcelWriter(self.excel_path, engine='openpyxl', mode='a',
|
144 |
+
if_sheet_exists='replace') as writer:
|
145 |
+
metrics_df.to_excel(writer, sheet_name='Metrics', index=False)
|
146 |
+
if store_text and text:
|
147 |
+
text_df.to_excel(writer, sheet_name='TextData', index=False)
|
148 |
+
|
149 |
+
# Successfully wrote to file
|
150 |
+
break
|
151 |
+
|
152 |
+
except Exception as e:
|
153 |
+
# If error occurs (likely due to concurrent access), retry after delay
|
154 |
+
logger.warning(f"Error writing to Excel (attempt {attempt+1}/{max_retries}): {e}")
|
155 |
+
time.sleep(retry_delay * (attempt + 1)) # Progressive backoff
|
156 |
+
else:
|
157 |
+
# If all retries fail, log to backup file
|
158 |
+
logger.error(f"Failed to write to Excel after {max_retries} attempts, logging to backup file")
|
159 |
+
self._write_to_backup(metrics_data, text, entry_id, store_text)
|
160 |
+
|
161 |
+
def _write_to_backup(self, metrics_data, text, entry_id, store_text):
|
162 |
+
"""Write to backup CSV files if Excel writing fails."""
|
163 |
+
timestamp = datetime.now().strftime('%Y%m%d')
|
164 |
+
|
165 |
+
# Log metrics to CSV
|
166 |
+
metrics_csv = os.path.join(self.log_dir, f"metrics_backup_{timestamp}.csv")
|
167 |
+
pd.DataFrame([metrics_data]).to_csv(metrics_csv, mode='a', header=not os.path.exists(metrics_csv), index=False)
|
168 |
+
|
169 |
+
# Log text to separate CSV if needed
|
170 |
+
if store_text and text:
|
171 |
+
text_csv = os.path.join(self.log_dir, f"text_backup_{timestamp}.csv")
|
172 |
+
text_data = {
|
173 |
+
'entry_id': entry_id,
|
174 |
+
'timestamp': metrics_data['timestamp'],
|
175 |
+
'text': text
|
176 |
+
}
|
177 |
+
pd.DataFrame([text_data]).to_csv(text_csv, mode='a', header=not os.path.exists(text_csv), index=False)
|
178 |
+
|
179 |
+
|
180 |
class TextWindowProcessor:
|
181 |
def __init__(self):
|
182 |
try:
|
|
|
329 |
'num_windows': len(predictions)
|
330 |
}
|
331 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
def detailed_scan(self, text: str) -> Dict:
|
333 |
"""Perform a detailed scan with improved sentence-level analysis."""
|
334 |
# Clean up trailing whitespace
|
|
|
479 |
'num_sentences': num_sentences
|
480 |
}
|
481 |
|
482 |
+
# Initialize the logger
|
483 |
+
excel_logger = ExcelLogger(log_dir="prediction_logs")
|
484 |
+
|
485 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
486 |
"""Analyze text using specified mode and return formatted results."""
|
487 |
+
# Start timing the prediction
|
488 |
+
start_time = time.time()
|
489 |
+
|
490 |
# Count words in the text
|
491 |
word_count = len(text.split())
|
492 |
|
|
|
497 |
|
498 |
if mode == "quick":
|
499 |
result = classifier.quick_scan(text)
|
500 |
+
prediction = result['prediction']
|
501 |
+
confidence = result['confidence']
|
502 |
+
num_windows = result['num_windows']
|
503 |
|
504 |
quick_analysis = f"""
|
505 |
+
PREDICTION: {prediction.upper()}
|
506 |
+
Confidence: {confidence*100:.1f}%
|
507 |
+
Windows analyzed: {num_windows}
|
508 |
"""
|
509 |
|
510 |
# Add note if mode was switched
|
511 |
if original_mode == "detailed":
|
512 |
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
|
513 |
|
514 |
+
output = (
|
515 |
text, # No highlighting in quick mode
|
516 |
"Quick scan mode - no sentence-level analysis available",
|
517 |
quick_analysis
|
518 |
)
|
519 |
+
|
520 |
+
# End timing
|
521 |
+
end_time = time.time()
|
522 |
+
prediction_time = end_time - start_time
|
523 |
+
|
524 |
+
# Log the data
|
525 |
+
log_data = {
|
526 |
+
"timestamp": datetime.now().isoformat(),
|
527 |
+
"word_count": word_count,
|
528 |
+
"mode": mode,
|
529 |
+
"prediction": prediction,
|
530 |
+
"confidence": confidence,
|
531 |
+
"prediction_time_seconds": prediction_time,
|
532 |
+
"num_sentences": 0, # No sentence analysis in quick mode
|
533 |
+
"text": text
|
534 |
+
}
|
535 |
+
excel_logger.log_prediction(log_data)
|
536 |
+
|
537 |
else:
|
538 |
analysis = classifier.detailed_scan(text)
|
539 |
+
prediction = analysis['overall_prediction']['prediction']
|
540 |
+
confidence = analysis['overall_prediction']['confidence']
|
541 |
+
num_sentences = analysis['overall_prediction']['num_sentences']
|
542 |
|
543 |
detailed_analysis = []
|
544 |
for pred in analysis['sentence_predictions']:
|
545 |
+
pred_confidence = pred['confidence'] * 100
|
546 |
detailed_analysis.append(f"Sentence: {pred['sentence']}")
|
547 |
detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}")
|
548 |
+
detailed_analysis.append(f"Confidence: {pred_confidence:.1f}%")
|
549 |
detailed_analysis.append("-" * 50)
|
550 |
|
551 |
final_pred = analysis['overall_prediction']
|
|
|
555 |
Number of sentences analyzed: {final_pred['num_sentences']}
|
556 |
"""
|
557 |
|
558 |
+
output = (
|
559 |
analysis['highlighted_text'],
|
560 |
"\n".join(detailed_analysis),
|
561 |
overall_result
|
562 |
)
|
563 |
+
|
564 |
+
# End timing
|
565 |
+
end_time = time.time()
|
566 |
+
prediction_time = end_time - start_time
|
567 |
+
|
568 |
+
# Log the data
|
569 |
+
log_data = {
|
570 |
+
"timestamp": datetime.now().isoformat(),
|
571 |
+
"word_count": word_count,
|
572 |
+
"mode": mode,
|
573 |
+
"prediction": prediction,
|
574 |
+
"confidence": confidence,
|
575 |
+
"prediction_time_seconds": prediction_time,
|
576 |
+
"num_sentences": num_sentences,
|
577 |
+
"text": text
|
578 |
+
}
|
579 |
+
excel_logger.log_prediction(log_data)
|
580 |
+
|
581 |
+
return output
|
582 |
|
583 |
# Initialize the classifier globally
|
584 |
classifier = TextClassifier()
|
585 |
|
586 |
+
# Create Gradio interface with added information about data collection
|
587 |
demo = gr.Interface(
|
588 |
fn=lambda text, mode: analyze_text(text, mode, classifier),
|
589 |
inputs=[
|
|
|
605 |
gr.Textbox(label="Overall Result", lines=4)
|
606 |
],
|
607 |
title="AI Text Detector",
|
608 |
+
description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions. Note: For testing purposes, text and analysis data will be recorded.",
|
609 |
api_name="predict",
|
610 |
flagging_mode="never"
|
611 |
)
|