Update app.py
Browse files
app.py
CHANGED
@@ -176,201 +176,113 @@ class TextClassifier:
|
|
176 |
'num_windows': len(predictions)
|
177 |
}
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
195 |
-
|
196 |
-
# Process windows in batches
|
197 |
-
batch_size = 16
|
198 |
-
for i in range(0, len(windows), batch_size):
|
199 |
-
batch_windows = windows[i:i + batch_size]
|
200 |
-
batch_indices = window_sentence_indices[i:i + batch_size]
|
201 |
-
|
202 |
-
inputs = self.tokenizer(
|
203 |
-
batch_windows,
|
204 |
-
truncation=True,
|
205 |
-
padding=True,
|
206 |
-
max_length=MAX_LENGTH,
|
207 |
-
return_tensors="pt"
|
208 |
-
).to(self.device)
|
209 |
-
|
210 |
-
with torch.no_grad():
|
211 |
-
outputs = self.model(**inputs)
|
212 |
-
probs = F.softmax(outputs.logits, dim=-1)
|
213 |
-
|
214 |
-
# Attribute predictions more carefully
|
215 |
-
for window_idx, indices in enumerate(batch_indices):
|
216 |
-
center_idx = len(indices) // 2
|
217 |
-
center_weight = 0.7 # Higher weight for center sentence
|
218 |
-
edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
219 |
-
|
220 |
-
for pos, sent_idx in enumerate(indices):
|
221 |
-
# Apply higher weight to center sentence
|
222 |
-
weight = center_weight if pos == center_idx else edge_weight
|
223 |
-
sentence_appearances[sent_idx] += weight
|
224 |
-
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
225 |
-
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
226 |
-
|
227 |
-
del inputs, outputs, probs
|
228 |
-
if torch.cuda.is_available():
|
229 |
-
torch.cuda.empty_cache()
|
230 |
-
|
231 |
-
# Calculate final predictions
|
232 |
-
sentence_predictions = []
|
233 |
-
for i in range(len(sentences)):
|
234 |
-
if sentence_appearances[i] > 0:
|
235 |
-
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
236 |
-
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
237 |
-
|
238 |
-
# Only apply minimal smoothing at prediction boundaries
|
239 |
-
if i > 0 and i < len(sentences) - 1:
|
240 |
-
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
241 |
-
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
242 |
-
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
243 |
-
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
244 |
-
|
245 |
-
# Check if we're at a prediction boundary
|
246 |
-
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
247 |
-
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
248 |
-
next_pred = 'human' if next_human > next_ai else 'ai'
|
249 |
-
|
250 |
-
if current_pred != prev_pred or current_pred != next_pred:
|
251 |
-
# Small adjustment at boundaries
|
252 |
-
smooth_factor = 0.1
|
253 |
-
human_prob = (human_prob * (1 - smooth_factor) +
|
254 |
-
(prev_human + next_human) * smooth_factor / 2)
|
255 |
-
ai_prob = (ai_prob * (1 - smooth_factor) +
|
256 |
-
(prev_ai + next_ai) * smooth_factor / 2)
|
257 |
-
|
258 |
-
sentence_predictions.append({
|
259 |
-
'sentence': sentences[i],
|
260 |
-
'human_prob': human_prob,
|
261 |
-
'ai_prob': ai_prob,
|
262 |
-
'prediction': 'human' if human_prob > ai_prob else 'ai',
|
263 |
-
'confidence': max(human_prob, ai_prob)
|
264 |
-
})
|
265 |
-
|
266 |
-
return {
|
267 |
-
'sentence_predictions': sentence_predictions,
|
268 |
-
'highlighted_text': self.format_predictions_html(sentence_predictions),
|
269 |
-
'full_text': text,
|
270 |
-
'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
271 |
-
}
|
272 |
-
|
273 |
-
def detailed_scan(self, text: str) -> Dict:
|
274 |
-
"""Perform a detailed scan with improved sentence-level analysis."""
|
275 |
-
if not text.strip():
|
276 |
-
return {
|
277 |
-
'sentence_predictions': [],
|
278 |
-
'highlighted_text': '',
|
279 |
-
'full_text': '',
|
280 |
-
'overall_prediction': {
|
281 |
-
'prediction': 'unknown',
|
282 |
-
'confidence': 0.0,
|
283 |
-
'num_sentences': 0
|
284 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
}
|
286 |
|
287 |
-
sentences = self.processor.split_into_sentences(text)
|
288 |
-
if not sentences:
|
289 |
-
return {}
|
290 |
-
|
291 |
-
# Create centered windows for each sentence
|
292 |
-
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
293 |
-
|
294 |
-
# Track scores for each sentence
|
295 |
-
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
296 |
-
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
297 |
-
|
298 |
-
# Process windows in batches
|
299 |
-
for i in range(0, len(windows), BATCH_SIZE):
|
300 |
-
batch_windows = windows[i:i + BATCH_SIZE]
|
301 |
-
batch_indices = window_sentence_indices[i:i + BATCH_SIZE]
|
302 |
-
|
303 |
-
inputs = self.tokenizer(
|
304 |
-
batch_windows,
|
305 |
-
truncation=True,
|
306 |
-
padding=True,
|
307 |
-
max_length=MAX_LENGTH,
|
308 |
-
return_tensors="pt"
|
309 |
-
).to(self.device)
|
310 |
-
|
311 |
-
with torch.no_grad():
|
312 |
-
outputs = self.model(**inputs)
|
313 |
-
probs = F.softmax(outputs.logits, dim=-1)
|
314 |
-
|
315 |
-
# Attribute predictions with weighted scoring
|
316 |
-
for window_idx, indices in enumerate(batch_indices):
|
317 |
-
center_idx = len(indices) // 2
|
318 |
-
center_weight = 0.7 # Higher weight for center sentence
|
319 |
-
edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
320 |
-
|
321 |
-
for pos, sent_idx in enumerate(indices):
|
322 |
-
# Apply higher weight to center sentence
|
323 |
-
weight = center_weight if pos == center_idx else edge_weight
|
324 |
-
sentence_appearances[sent_idx] += weight
|
325 |
-
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
326 |
-
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
327 |
-
|
328 |
-
# Clean up memory
|
329 |
-
del inputs, outputs, probs
|
330 |
-
if torch.cuda.is_available():
|
331 |
-
torch.cuda.empty_cache()
|
332 |
-
|
333 |
-
# Calculate final predictions with boundary smoothing
|
334 |
-
sentence_predictions = []
|
335 |
-
for i in range(len(sentences)):
|
336 |
-
if sentence_appearances[i] > 0:
|
337 |
-
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
338 |
-
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
339 |
-
|
340 |
-
# Apply minimal smoothing at prediction boundaries
|
341 |
-
if i > 0 and i < len(sentences) - 1:
|
342 |
-
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
343 |
-
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
344 |
-
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
345 |
-
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
346 |
-
|
347 |
-
# Check if we're at a prediction boundary
|
348 |
-
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
349 |
-
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
350 |
-
next_pred = 'human' if next_human > next_ai else 'ai'
|
351 |
-
|
352 |
-
if current_pred != prev_pred or current_pred != next_pred:
|
353 |
-
# Small adjustment at boundaries
|
354 |
-
smooth_factor = 0.1
|
355 |
-
human_prob = (human_prob * (1 - smooth_factor) +
|
356 |
-
(prev_human + next_human) * smooth_factor / 2)
|
357 |
-
ai_prob = (ai_prob * (1 - smooth_factor) +
|
358 |
-
(prev_ai + next_ai) * smooth_factor / 2)
|
359 |
-
|
360 |
-
sentence_predictions.append({
|
361 |
-
'sentence': sentences[i],
|
362 |
-
'human_prob': human_prob,
|
363 |
-
'ai_prob': ai_prob,
|
364 |
-
'prediction': 'human' if human_prob > ai_prob else 'ai',
|
365 |
-
'confidence': max(human_prob, ai_prob)
|
366 |
-
})
|
367 |
-
|
368 |
-
return {
|
369 |
-
'sentence_predictions': sentence_predictions,
|
370 |
-
'highlighted_text': self.format_predictions_html(sentence_predictions),
|
371 |
-
'full_text': text,
|
372 |
-
'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
373 |
-
}
|
374 |
|
375 |
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
|
376 |
"""Format predictions as HTML with color-coding."""
|
|
|
176 |
'num_windows': len(predictions)
|
177 |
}
|
178 |
|
179 |
+
def detailed_scan(self, text: str) -> Dict:
|
180 |
+
"""Original prediction method with modified window handling"""
|
181 |
+
# Clean up trailing whitespace
|
182 |
+
text = text.rstrip()
|
183 |
+
|
184 |
+
if not text.strip():
|
185 |
+
return {
|
186 |
+
'sentence_predictions': [],
|
187 |
+
'highlighted_text': '',
|
188 |
+
'full_text': '',
|
189 |
+
'overall_prediction': {
|
190 |
+
'prediction': 'unknown',
|
191 |
+
'confidence': 0.0,
|
192 |
+
'num_sentences': 0
|
193 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
}
|
195 |
+
|
196 |
+
self.model.eval()
|
197 |
+
sentences = self.processor.split_into_sentences(text)
|
198 |
+
if not sentences:
|
199 |
+
return {}
|
200 |
+
|
201 |
+
# Create centered windows for each sentence
|
202 |
+
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
203 |
+
|
204 |
+
# Track scores for each sentence
|
205 |
+
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
206 |
+
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
207 |
+
|
208 |
+
# Process windows in batches
|
209 |
+
batch_size = 16
|
210 |
+
for i in range(0, len(windows), batch_size):
|
211 |
+
batch_windows = windows[i:i + batch_size]
|
212 |
+
batch_indices = window_sentence_indices[i:i + batch_size]
|
213 |
+
|
214 |
+
inputs = self.tokenizer(
|
215 |
+
batch_windows,
|
216 |
+
truncation=True,
|
217 |
+
padding=True,
|
218 |
+
max_length=MAX_LENGTH,
|
219 |
+
return_tensors="pt"
|
220 |
+
).to(self.device)
|
221 |
+
|
222 |
+
with torch.no_grad():
|
223 |
+
outputs = self.model(**inputs)
|
224 |
+
probs = F.softmax(outputs.logits, dim=-1)
|
225 |
+
|
226 |
+
# Attribute predictions with weighted scoring
|
227 |
+
for window_idx, indices in enumerate(batch_indices):
|
228 |
+
center_idx = len(indices) // 2
|
229 |
+
center_weight = 0.7 # Higher weight for center sentence
|
230 |
+
edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
231 |
+
|
232 |
+
for pos, sent_idx in enumerate(indices):
|
233 |
+
# Apply higher weight to center sentence
|
234 |
+
weight = center_weight if pos == center_idx else edge_weight
|
235 |
+
sentence_appearances[sent_idx] += weight
|
236 |
+
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
237 |
+
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
238 |
+
|
239 |
+
# Clean up memory
|
240 |
+
del inputs, outputs, probs
|
241 |
+
if torch.cuda.is_available():
|
242 |
+
torch.cuda.empty_cache()
|
243 |
+
|
244 |
+
# Calculate final predictions with boundary smoothing
|
245 |
+
sentence_predictions = []
|
246 |
+
for i in range(len(sentences)):
|
247 |
+
if sentence_appearances[i] > 0:
|
248 |
+
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
249 |
+
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
250 |
+
|
251 |
+
# Only apply minimal smoothing at prediction boundaries
|
252 |
+
if i > 0 and i < len(sentences) - 1:
|
253 |
+
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
254 |
+
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
255 |
+
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
256 |
+
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
257 |
+
|
258 |
+
# Check if we're at a prediction boundary
|
259 |
+
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
260 |
+
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
261 |
+
next_pred = 'human' if next_human > next_ai else 'ai'
|
262 |
+
|
263 |
+
if current_pred != prev_pred or current_pred != next_pred:
|
264 |
+
# Small adjustment at boundaries
|
265 |
+
smooth_factor = 0.1
|
266 |
+
human_prob = (human_prob * (1 - smooth_factor) +
|
267 |
+
(prev_human + next_human) * smooth_factor / 2)
|
268 |
+
ai_prob = (ai_prob * (1 - smooth_factor) +
|
269 |
+
(prev_ai + next_ai) * smooth_factor / 2)
|
270 |
+
|
271 |
+
sentence_predictions.append({
|
272 |
+
'sentence': sentences[i],
|
273 |
+
'human_prob': human_prob,
|
274 |
+
'ai_prob': ai_prob,
|
275 |
+
'prediction': 'human' if human_prob > ai_prob else 'ai',
|
276 |
+
'confidence': max(human_prob, ai_prob)
|
277 |
+
})
|
278 |
+
|
279 |
+
return {
|
280 |
+
'sentence_predictions': sentence_predictions,
|
281 |
+
'highlighted_text': self.format_predictions_html(sentence_predictions),
|
282 |
+
'full_text': text,
|
283 |
+
'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
284 |
}
|
285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
|
288 |
"""Format predictions as HTML with color-coding."""
|