Update app.py
Browse files
app.py
CHANGED
@@ -176,102 +176,105 @@ class TextClassifier:
|
|
176 |
'num_windows': len(predictions)
|
177 |
}
|
178 |
|
179 |
-
def detailed_scan(self, text: str) -> Dict:
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
|
273 |
def detailed_scan(self, text: str) -> Dict:
|
274 |
"""Perform a detailed scan with improved sentence-level analysis."""
|
|
|
|
|
|
|
275 |
if not text.strip():
|
276 |
return {
|
277 |
'sentence_predictions': [],
|
|
|
176 |
'num_windows': len(predictions)
|
177 |
}
|
178 |
|
179 |
+
# def detailed_scan(self, text: str) -> Dict:
|
180 |
+
# """Original prediction method with modified window handling"""
|
181 |
+
# if self.model is None or self.tokenizer is None:
|
182 |
+
# self.load_model()
|
183 |
+
|
184 |
+
# self.model.eval()
|
185 |
+
# sentences = self.processor.split_into_sentences(text)
|
186 |
+
# if not sentences:
|
187 |
+
# return {}
|
188 |
+
|
189 |
+
# # Create centered windows for each sentence
|
190 |
+
# windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
191 |
+
|
192 |
+
# # Track scores for each sentence
|
193 |
+
# sentence_appearances = {i: 0 for i in range(len(sentences))}
|
194 |
+
# sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
195 |
+
|
196 |
+
# # Process windows in batches
|
197 |
+
# batch_size = 16
|
198 |
+
# for i in range(0, len(windows), batch_size):
|
199 |
+
# batch_windows = windows[i:i + batch_size]
|
200 |
+
# batch_indices = window_sentence_indices[i:i + batch_size]
|
201 |
+
|
202 |
+
# inputs = self.tokenizer(
|
203 |
+
# batch_windows,
|
204 |
+
# truncation=True,
|
205 |
+
# padding=True,
|
206 |
+
# max_length=MAX_LENGTH,
|
207 |
+
# return_tensors="pt"
|
208 |
+
# ).to(self.device)
|
209 |
+
|
210 |
+
# with torch.no_grad():
|
211 |
+
# outputs = self.model(**inputs)
|
212 |
+
# probs = F.softmax(outputs.logits, dim=-1)
|
213 |
+
|
214 |
+
# # Attribute predictions more carefully
|
215 |
+
# for window_idx, indices in enumerate(batch_indices):
|
216 |
+
# center_idx = len(indices) // 2
|
217 |
+
# center_weight = 0.7 # Higher weight for center sentence
|
218 |
+
# edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
219 |
+
|
220 |
+
# for pos, sent_idx in enumerate(indices):
|
221 |
+
# # Apply higher weight to center sentence
|
222 |
+
# weight = center_weight if pos == center_idx else edge_weight
|
223 |
+
# sentence_appearances[sent_idx] += weight
|
224 |
+
# sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
225 |
+
# sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
226 |
+
|
227 |
+
# del inputs, outputs, probs
|
228 |
+
# if torch.cuda.is_available():
|
229 |
+
# torch.cuda.empty_cache()
|
230 |
+
|
231 |
+
# # Calculate final predictions
|
232 |
+
# sentence_predictions = []
|
233 |
+
# for i in range(len(sentences)):
|
234 |
+
# if sentence_appearances[i] > 0:
|
235 |
+
# human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
236 |
+
# ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
237 |
+
|
238 |
+
# # Only apply minimal smoothing at prediction boundaries
|
239 |
+
# if i > 0 and i < len(sentences) - 1:
|
240 |
+
# prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
241 |
+
# prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
242 |
+
# next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
243 |
+
# next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
244 |
+
|
245 |
+
# # Check if we're at a prediction boundary
|
246 |
+
# current_pred = 'human' if human_prob > ai_prob else 'ai'
|
247 |
+
# prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
248 |
+
# next_pred = 'human' if next_human > next_ai else 'ai'
|
249 |
+
|
250 |
+
# if current_pred != prev_pred or current_pred != next_pred:
|
251 |
+
# # Small adjustment at boundaries
|
252 |
+
# smooth_factor = 0.1
|
253 |
+
# human_prob = (human_prob * (1 - smooth_factor) +
|
254 |
+
# (prev_human + next_human) * smooth_factor / 2)
|
255 |
+
# ai_prob = (ai_prob * (1 - smooth_factor) +
|
256 |
+
# (prev_ai + next_ai) * smooth_factor / 2)
|
257 |
+
|
258 |
+
# sentence_predictions.append({
|
259 |
+
# 'sentence': sentences[i],
|
260 |
+
# 'human_prob': human_prob,
|
261 |
+
# 'ai_prob': ai_prob,
|
262 |
+
# 'prediction': 'human' if human_prob > ai_prob else 'ai',
|
263 |
+
# 'confidence': max(human_prob, ai_prob)
|
264 |
+
# })
|
265 |
+
|
266 |
+
# return {
|
267 |
+
# 'sentence_predictions': sentence_predictions,
|
268 |
+
# 'highlighted_text': self.format_predictions_html(sentence_predictions),
|
269 |
+
# 'full_text': text,
|
270 |
+
# 'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
271 |
+
# }
|
272 |
|
273 |
def detailed_scan(self, text: str) -> Dict:
|
274 |
"""Perform a detailed scan with improved sentence-level analysis."""
|
275 |
+
# Clean up trailing whitespace
|
276 |
+
text = text.rstrip()
|
277 |
+
|
278 |
if not text.strip():
|
279 |
return {
|
280 |
'sentence_predictions': [],
|