Update app.py
Browse files
app.py
CHANGED
@@ -12,12 +12,6 @@ from concurrent.futures import ThreadPoolExecutor
|
|
12 |
from functools import partial
|
13 |
import time
|
14 |
from datetime import datetime
|
15 |
-
import openpyxl
|
16 |
-
from openpyxl import Workbook
|
17 |
-
from openpyxl.utils import get_column_letter
|
18 |
-
from io import BytesIO
|
19 |
-
import base64
|
20 |
-
import hashlib
|
21 |
|
22 |
# Configure logging
|
23 |
logging.basicConfig(level=logging.INFO)
|
@@ -32,26 +26,6 @@ CONFIDENCE_THRESHOLD = 0.65
|
|
32 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
33 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
34 |
|
35 |
-
# Get password hash from environment variable (more secure)
|
36 |
-
ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH')
|
37 |
-
|
38 |
-
if not ADMIN_PASSWORD_HASH:
|
39 |
-
ADMIN_PASSWORD_HASH = "5e22d1ed71b273b1b2b5331f2d3e0f6cf34595236f201c6924d6bc81de27cdcb"
|
40 |
-
|
41 |
-
# Excel file path for logs
|
42 |
-
EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"
|
43 |
-
|
44 |
-
def is_admin_password(input_text: str) -> bool:
|
45 |
-
"""
|
46 |
-
Check if the input text matches the admin password using secure hash comparison.
|
47 |
-
This prevents the password from being visible in the source code.
|
48 |
-
"""
|
49 |
-
# Hash the input text
|
50 |
-
input_hash = hashlib.sha256(input_text.strip().encode()).hexdigest()
|
51 |
-
|
52 |
-
# Compare hashes (constant-time comparison to prevent timing attacks)
|
53 |
-
return input_hash == ADMIN_PASSWORD_HASH
|
54 |
-
|
55 |
class TextWindowProcessor:
|
56 |
def __init__(self):
|
57 |
try:
|
@@ -354,133 +328,8 @@ class TextClassifier:
|
|
354 |
'num_sentences': num_sentences
|
355 |
}
|
356 |
|
357 |
-
def initialize_excel_log():
|
358 |
-
"""Initialize the Excel log file if it doesn't exist."""
|
359 |
-
if not os.path.exists(EXCEL_LOG_PATH):
|
360 |
-
wb = Workbook()
|
361 |
-
ws = wb.active
|
362 |
-
ws.title = "Prediction Logs"
|
363 |
-
|
364 |
-
# Set column headers
|
365 |
-
headers = ["timestamp", "word_count", "prediction", "confidence",
|
366 |
-
"execution_time_ms", "analysis_mode", "full_text"]
|
367 |
-
|
368 |
-
for col_num, header in enumerate(headers, 1):
|
369 |
-
ws.cell(row=1, column=col_num, value=header)
|
370 |
-
|
371 |
-
# Adjust column widths for better readability
|
372 |
-
ws.column_dimensions[get_column_letter(1)].width = 20 # timestamp
|
373 |
-
ws.column_dimensions[get_column_letter(2)].width = 10 # word_count
|
374 |
-
ws.column_dimensions[get_column_letter(3)].width = 10 # prediction
|
375 |
-
ws.column_dimensions[get_column_letter(4)].width = 10 # confidence
|
376 |
-
ws.column_dimensions[get_column_letter(5)].width = 15 # execution_time_ms
|
377 |
-
ws.column_dimensions[get_column_letter(6)].width = 15 # analysis_mode
|
378 |
-
ws.column_dimensions[get_column_letter(7)].width = 100 # full_text
|
379 |
-
|
380 |
-
# Save the workbook
|
381 |
-
wb.save(EXCEL_LOG_PATH)
|
382 |
-
logger.info(f"Initialized Excel log file at {EXCEL_LOG_PATH}")
|
383 |
-
|
384 |
-
def log_prediction_data(input_text, word_count, prediction, confidence, execution_time, mode):
|
385 |
-
"""Log prediction data to an Excel file in the /tmp directory."""
|
386 |
-
# Initialize the Excel file if it doesn't exist
|
387 |
-
if not os.path.exists(EXCEL_LOG_PATH):
|
388 |
-
initialize_excel_log()
|
389 |
-
|
390 |
-
try:
|
391 |
-
# Load the existing workbook
|
392 |
-
wb = openpyxl.load_workbook(EXCEL_LOG_PATH)
|
393 |
-
ws = wb.active
|
394 |
-
|
395 |
-
# Get the next row number
|
396 |
-
next_row = ws.max_row + 1
|
397 |
-
|
398 |
-
# Clean up the input text for Excel storage (replace problematic characters)
|
399 |
-
cleaned_text = input_text.replace("\n", " ")
|
400 |
-
|
401 |
-
# Prepare row data
|
402 |
-
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
403 |
-
row_data = [
|
404 |
-
timestamp,
|
405 |
-
word_count,
|
406 |
-
prediction,
|
407 |
-
f"{confidence:.2f}",
|
408 |
-
f"{execution_time:.2f}",
|
409 |
-
mode,
|
410 |
-
cleaned_text
|
411 |
-
]
|
412 |
-
|
413 |
-
# Add the data to the worksheet
|
414 |
-
for col_num, value in enumerate(row_data, 1):
|
415 |
-
ws.cell(row=next_row, column=col_num, value=value)
|
416 |
-
|
417 |
-
# Save the workbook
|
418 |
-
wb.save(EXCEL_LOG_PATH)
|
419 |
-
logger.info(f"Successfully logged prediction data to {EXCEL_LOG_PATH}")
|
420 |
-
return True
|
421 |
-
|
422 |
-
except Exception as e:
|
423 |
-
logger.error(f"Error logging prediction data to Excel: {str(e)}")
|
424 |
-
return False
|
425 |
-
|
426 |
-
def get_logs_as_base64():
|
427 |
-
"""Read the Excel logs file and return as base64 for downloading."""
|
428 |
-
if not os.path.exists(EXCEL_LOG_PATH):
|
429 |
-
return None
|
430 |
-
|
431 |
-
try:
|
432 |
-
# Read the Excel file into memory
|
433 |
-
with open(EXCEL_LOG_PATH, "rb") as f:
|
434 |
-
file_data = f.read()
|
435 |
-
|
436 |
-
# Encode the file as base64
|
437 |
-
base64_data = base64.b64encode(file_data).decode('utf-8')
|
438 |
-
return base64_data
|
439 |
-
|
440 |
-
except Exception as e:
|
441 |
-
logger.error(f"Error reading Excel logs: {str(e)}")
|
442 |
-
return None
|
443 |
-
|
444 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
445 |
"""Analyze text using specified mode and return formatted results."""
|
446 |
-
# Check if the input text matches the admin password using secure comparison
|
447 |
-
if is_admin_password(text.strip()):
|
448 |
-
# Return logs instead of analysis
|
449 |
-
base64_data = get_logs_as_base64()
|
450 |
-
logs_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
451 |
-
logs_filename = f"prediction_logs_{logs_timestamp}.xlsx"
|
452 |
-
|
453 |
-
if base64_data:
|
454 |
-
# Create downloadable HTML with the logs
|
455 |
-
html_content = f"""
|
456 |
-
<div style="background-color: #e6f7ff; padding: 15px; border-radius: 5px;">
|
457 |
-
<h3>Admin Access Granted - Prediction Logs</h3>
|
458 |
-
<p>Logs retrieved at: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}</p>
|
459 |
-
<p>Excel file contains all prediction data with full text of all submissions.</p>
|
460 |
-
<a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{base64_data}"
|
461 |
-
download="{logs_filename}"
|
462 |
-
style="display: inline-block; margin-top: 10px; padding: 10px 15px;
|
463 |
-
background-color: #4CAF50; color: white; text-decoration: none;
|
464 |
-
border-radius: 4px;">
|
465 |
-
Download Excel Logs
|
466 |
-
</a>
|
467 |
-
</div>
|
468 |
-
"""
|
469 |
-
else:
|
470 |
-
html_content = """
|
471 |
-
<div style="background-color: #ffe6e6; padding: 15px; border-radius: 5px;">
|
472 |
-
<h3>Admin Access Granted - No Logs Found</h3>
|
473 |
-
<p>No prediction logs were found or there was an error reading the logs file.</p>
|
474 |
-
</div>
|
475 |
-
"""
|
476 |
-
|
477 |
-
# Return special admin output instead of normal analysis
|
478 |
-
return (
|
479 |
-
html_content,
|
480 |
-
f"Admin access granted. Logs retrieved at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
|
481 |
-
f"ADMIN MODE\nLogs available for download\nFile: {EXCEL_LOG_PATH}"
|
482 |
-
)
|
483 |
-
|
484 |
# Start timing for normal analysis
|
485 |
start_time = time.time()
|
486 |
|
@@ -508,16 +357,6 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
508 |
# Calculate execution time in milliseconds
|
509 |
execution_time = (time.time() - start_time) * 1000
|
510 |
|
511 |
-
# Log the prediction data
|
512 |
-
log_prediction_data(
|
513 |
-
input_text=text,
|
514 |
-
word_count=word_count,
|
515 |
-
prediction=result['prediction'],
|
516 |
-
confidence=result['confidence'],
|
517 |
-
execution_time=execution_time,
|
518 |
-
mode=original_mode
|
519 |
-
)
|
520 |
-
|
521 |
return (
|
522 |
text, # No highlighting in quick mode
|
523 |
"Quick scan mode - no sentence-level analysis available",
|
@@ -544,16 +383,6 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
544 |
# Calculate execution time in milliseconds
|
545 |
execution_time = (time.time() - start_time) * 1000
|
546 |
|
547 |
-
# Log the prediction data
|
548 |
-
log_prediction_data(
|
549 |
-
input_text=text,
|
550 |
-
word_count=word_count,
|
551 |
-
prediction=final_pred['prediction'],
|
552 |
-
confidence=final_pred['confidence'],
|
553 |
-
execution_time=execution_time,
|
554 |
-
mode=original_mode
|
555 |
-
)
|
556 |
-
|
557 |
return (
|
558 |
analysis['highlighted_text'],
|
559 |
"\n".join(detailed_analysis),
|
@@ -609,5 +438,4 @@ if __name__ == "__main__":
|
|
609 |
server_name="0.0.0.0",
|
610 |
server_port=7860,
|
611 |
share=True
|
612 |
-
)
|
613 |
-
|
|
|
12 |
from functools import partial
|
13 |
import time
|
14 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Configure logging
|
17 |
logging.basicConfig(level=logging.INFO)
|
|
|
26 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
27 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
class TextWindowProcessor:
|
30 |
def __init__(self):
|
31 |
try:
|
|
|
328 |
'num_sentences': num_sentences
|
329 |
}
|
330 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
332 |
"""Analyze text using specified mode and return formatted results."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
# Start timing for normal analysis
|
334 |
start_time = time.time()
|
335 |
|
|
|
357 |
# Calculate execution time in milliseconds
|
358 |
execution_time = (time.time() - start_time) * 1000
|
359 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
return (
|
361 |
text, # No highlighting in quick mode
|
362 |
"Quick scan mode - no sentence-level analysis available",
|
|
|
383 |
# Calculate execution time in milliseconds
|
384 |
execution_time = (time.time() - start_time) * 1000
|
385 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
return (
|
387 |
analysis['highlighted_text'],
|
388 |
"\n".join(detailed_analysis),
|
|
|
438 |
server_name="0.0.0.0",
|
439 |
server_port=7860,
|
440 |
share=True
|
441 |
+
)
|
|